8 research outputs found

    SEDIMENTS FROM AROUND THE LOWER YOUNGER DRYAS BOUNDARY (SE ARIZONA, USA): IMPLICATIONS FROM LA-ICP-MS MULTI-ELEMENT ANALYSIS

    No full text
    One of the prominent features in sediment sequences formed around the AllerOd-Younger Dryas transition (c. 12.9-12.8 ka bp) in North America is a dark layer of organic-rich material, i.e. the black mat. The black mat sequences in southeast Arizona contain a thin sandy basal layer corresponding to the lower Younger Dryas boundary. Trace element concentrations in the lower Younger Dryas boundary sediments, in the black mat, in the host sediments, and in charcoal from Western Europe and southeast Arizona were studied using LA-ICP-MS. The black mat samples and samples of the underlying host sediments display compositions similar to the average continental crust, while the sediments from the lower Younger Dryas boundary are enriched in rare earth elements, Ni, and Co whereas Ta, Nb, Zr, and Hf are depleted relative to the rare earth elements. Such a difference in compositions between the lower Younger Dryas boundary sediments and other sediments points to a short enigmatic event, which changed conditions of sedimentation just before the onset of the Younger Dryas cooling. The presence of products of biomass burning of still unknown origin is suggested on the basis of trace element features of sediments from the lower Younger Dryas boundary.NAI International Collaboration FundVersion of Record online : 14 JUL 2016; 24 Month Embargo.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Trace-Element Geochemistry of Sulfides in Upper Mantle Lherzolite Xenoliths from East Antarctica

    No full text
    Sulfides in upper mantle lherzolite xenoliths from Cretaceous alkaline-ultramafic rocks in the Jetty Peninsula (East Antarctica) were studied for their major and trace-element compositions using SEM and LA-ICP-MS applied in situ. Modal abundance of sulfides is the lowest in Cpx-poor lherzolites ā‰¤ Spl-Grt lherzolites << Cpx-rich lherzolites. Most sulfides are either interstitial (i-type) or inclusions in rock-forming minerals (e-type) with minor sulfide phases mostly present in metasomatic veinlets and carbonate-silicate interstitial patches (m-type). The main sulfide assemblage is pentlandite + chalcopyrite Ā± pyrrhotite; minor sulfides are polydymite, millerite, violarite, siegenite, and monosulfide solution (mss). Sulfide assemblages in the xenolith matrix are a product of the subsolidus re-equilibration of primary mss at temperatures below ā‰¤300 Ā°C. Platinum group elements (PGE) abundances suggest that most e-type sulfides are the residues of melting processes and that the i-type sulfides are crystallization products of sulfide-bearing fluids/liquids. The m-type sulfides might have resulted from low-temperature metasomatism by percolating sulfide-carbonate-silicate fluids/melts. The PGE in sulfide record processes are related to partial melting in mantle and intramantle melt migration. Most other trace elements initially partitioned into interstitial sulfide liquid and later metasomatically re-enriched residual sulfides overprinting their primary signatures. The extent of element partitioning into sulfide liquids depends on P, T, fO2, and host peridotite composition

    Trace element distribution and implications in sediments across the AllerĆød-Younger Dryas boundary in the Netherlands and Belgium

    No full text
    In the Northern Hemisphere, the Younger Dryas cooling occurred between 12.8 and 11.7 ka bp. This cooling is thought to have been the result of an abrupt change in atmospheric and oceanic circulations. One of the hypotheses explaining such a change suggests that just before the onset of the Younger Dryas cooling, multiple airbursts/impacts occurred over the Northern Hemisphere. We studied the late Pleistocene sediments from the Netherlands and Belgium to check whether a sudden short event might have taken place just before the onset of the Younger Dryas cooling. The geochemical features revealed suggest that such events might have occurred. The presence of products of biomass burning is suggested on the basis of trace element features of sediments from the lower Younger Dryas boundary. The presence of a volcanic component and a component resulting from extensive biomass burning in the sediments of c. 12.9 ka bp are indicated on the basis of trace element features. The volcanic component may be related to the Laacher See volcano eruption, whereas the cause of the extensive biomass burning remains unclear

    Controls on Ī“26Mg variability in three Central European headwater catchments characterized by contrasting bedrock chemistry and contrasting inputs of atmospheric pollutants.

    No full text
    Magnesium isotope ratios (26Mg/24Mg) can provide insights into the origin of Mg pools and fluxes in catchments where Mg sources have distinct isotope compositions, and the direction and magnitude of Mg isotope fractionations are known. Variability in Mg isotope compositions was investigated in three small, spruce-forested catchments in the Czech Republic (Central Europe) situated along an industrial pollution gradient. The following combinations of catchment characteristics were selected for the study: low-Mg bedrock + low Mg deposition (site LYS, underlain by leucogranite); high-Mg bedrock + low Mg deposition (site PLB, underlain by serpentinite), and low-Mg bedrock + high Mg deposition (site UDL, underlain by orthogneiss). UDL, affected by spruce die-back due to acid rain, was the only investigated site where dolomite was applied to mitigate forest decline. The Ī“26Mg values of 10 catchment compartments were determined on pooled subsamples. At LYS, a wide range of Ī“26Mg values was observed across the compartments, from -3.38 ā€° (bedrock) to -2.88 ā€° (soil), -1.48% (open-area precipitation), -1.34 ā€° (throughfall), -1.19 ā€° (soil water), -0.99 ā€° (xylem), -0.95 ā€° (needles), -0.82 ā€° (bark), -0.76 ā€° (fine roots), and -0.76 ā€° (runoff). The Ī“26Mg values at UDL spanned 1.32 ā€° and were thus less variable, compared to LYS. Magnesium at PLB was isotopically relatively homogeneous. The Ī“26Mg systematics was consistent with geogenic control of runoff Mg at PLB. Mainly atmospheric/biological control of runoff Mg was indicated at UDL, and possibly also at LYS. Our sites did not exhibit the combination of low-Ī“26Mg runoff and high-Ī“26Mg weathering products (secondary clay minerals) reported from several previously studied sites. Six years after the end of liming at UDL, Mg derived from dolomite was isotopically undetectable in runoff

    Mg, Ca and Sr isotope dynamics in a small forested catchment underlain by paragneiss: The role of geogenic, atmospheric, and biogenic sources of base cations

    No full text
    Knowledge of the origin of magnesium (Mg) and calcium (Ca) in soil solutions and catchment runoff helps to predict forest ecosystemsā€™ vulnerability to deficiencies in essential nutrients in an era of climate change, environmental pollution and bark-beetle calamities. Here we discuss isotope aspects of Mg, Ca and strontium (Sr) cycling in a spruce-forested headwater catchment in a relatively unpolluted part of Central Europe. We investigated to what extent Mg and Ca isotope signatures of runoff reflect the isotope compositions of specific Mg- and Ca-rich minerals that easily dissolve during the weathering of paragneiss, and compared the isotope variability of Mg and Ca in fresh bedrock minerals, soils and other ecosystem reservoirs. We also compared conclusions from Mg and Ca isotope systematics with inferences from catchment inputā€“output mass budgets. Long-term inputā€“output monitoring in the studied catchment situated near the Czechā€“German border (Central Europe) revealed 3.5ā€“7 times higher outputs of Mg, Ca, and Sr via surface runoff relative to their present-day atmospheric inputs. It follows that hydrological exports of recent atmospheric Mg, Ca and Sr are minor. Release of geogenic base cations into the runoff results from the interplay between mineral abundances, concentrations of the studied elements in the minerals, and their dissolution rates. Chemical depletion fractions for the studied elements from bedrock to the soil were 50ā€“70 %, and the losses of dominant soluble minerals in the soil were 30ā€“80 %. Exports of residual Mg, Ca and Sr following partial incorporation of these elements into secondary phyllosilicates are probably low because newly-formed clay minerals are not abundant in the soil. Residual Ca following preferential incorporation of isotopically light Ca into growing tree biomass may contribute to the isotopically heavy runoff Ca. Isotope ratios of base cations were obtained for six minerals (plagioclase, orthoclase, biotite, muscovite, apatite, and ilmenite). Mineral fractions differ greatly in Ī“Ā²ā¶Mg and Ī“ā“ā“Ca values and āøā·Sr/āøā¶Sr ratios. 80ā€“97 % of each of the three studied base cations are present in the bedrock in a single relatively easily dissolvable mineral: Mg in biotite, and Ca and Sr in plagioclase. The isotope composition of Mg in biotite was similar to the isotope composition of Mg in runoff. The isotope compositions of Ca and Sr in plagioclase were also similar to Ca and Sr isotope compositions in runoff. Thus, the dominant geogenic source of each of the studied elements (Mg, Ca and Sr) in the investigated paragneiss catchment can be represented by one relatively soluble mineral.ISSN:0016-7061ISSN:1872-625

    Mg, Ca and Sr isotope dynamics in a small forested catchment underlain by paragneiss: The role of geogenic, atmospheric, and biogenic sources of base cations

    No full text
    Knowledge of the origin of magnesium (Mg) and calcium (Ca) in soil solutions and catchment runoff helps to predict forest ecosystemsā€™ vulnerability to deficiencies in essential nutrients in an era of climate change, environmental pollution and bark-beetle calamities. Here we discuss isotope aspects of Mg, Ca and strontium (Sr) cycling in a spruce-forested headwater catchment in a relatively unpolluted part of Central Europe. We investigated to what extent Mg and Ca isotope signatures of runoff reflect the isotope compositions of specific Mg- and Ca-rich minerals that easily dissolve during the weathering of paragneiss, and compared the isotope variability of Mg and Ca in fresh bedrock minerals, soils and other ecosystem reservoirs. We also compared conclusions from Mg and Ca isotope systematics with inferences from catchment inputā€“output mass budgets. Long-term inputā€“output monitoring in the studied catchment situated near the Czechā€“German border (Central Europe) revealed 3.5ā€“7 times higher outputs of Mg, Ca, and Sr via surface runoff relative to their present-day atmospheric inputs. It follows that hydrological exports of recent atmospheric Mg, Ca and Sr are minor. Release of geogenic base cations into the runoff results from the interplay between mineral abundances, concentrations of the studied elements in the minerals, and their dissolution rates. Chemical depletion fractions for the studied elements from bedrock to the soil were 50ā€“70Ā %, and the losses of dominant soluble minerals in the soil were 30ā€“80Ā %. Exports of residual Mg, Ca and Sr following partial incorporation of these elements into secondary phyllosilicates are probably low because newly-formed clay minerals are not abundant in the soil. Residual Ca following preferential incorporation of isotopically light Ca into growing tree biomass may contribute to the isotopically heavy runoff Ca. Isotope ratios of base cations were obtained for six minerals (plagioclase, orthoclase, biotite, muscovite, apatite, and ilmenite). Mineral fractions differ greatly in Ī“26Mg and Ī“44Ca values and 87Sr/86Sr ratios. 80ā€“97Ā % of each of the three studied base cations are present in the bedrock in a single relatively easily dissolvable mineral: Mg in biotite, and Ca and Sr in plagioclase. The isotope composition of Mg in biotite was similar to the isotope composition of Mg in runoff. The isotope compositions of Ca and Sr in plagioclase were also similar to Ca and Sr isotope compositions in runoff. Thus, the dominant geogenic source of each of the studied elements (Mg, Ca and Sr) in the investigated paragneiss catchment can be represented by one relatively soluble mineral

    Literaturverzeichnis

    No full text
    corecore