6 research outputs found
Learning Social Etiquette: Human Trajectory Understanding In Crowded Scenes
Humans navigate crowded spaces such as a university campus by following common sense rules based on social etiquette. In this paper, we argue that in order to enable the design of new target tracking or trajectory forecasting methods that can take full advantage of these rules, we need to have access to better data in the first place. To that end, we contribute a new large-scale dataset that collects videos of various types of targets (not just pedestrians, but also bikers, skateboarders, cars, buses, golf carts) that navigate in a real world outdoor environment such as a university campus. Moreover, we introduce a new characterization that describes the “social sensitivity” at which two targets interact. We use this characterization to define “navigation styles” and improve both forecasting models and state-of-the-art multi-target tracking–whereby the learnt forecasting models help the data association step
Social LSTM: Human Trajectory Prediction in Crowded Spaces
Pedestrians follow different trajectories to avoid obstacles and accommodate fellow pedestrians. Any autonomous vehicle navigating such a scene should be able to foresee the future positions of pedestrians and accordingly adjust its path to avoid collisions. This problem of trajectory prediction can be viewed as a sequence generation task, where we are interested in predicting the future trajectory of people based on their past positions. Following the recent success of Recurrent Neural Network (RNN) models for sequence prediction tasks, we propose an LSTM model which can learn general human movement and predict their future trajectories. This is in contrast to traditional approaches which use hand-crafted functions such as Social forces. We demonstrate the performance of our method on several public datasets. Our model outperforms state-of-the-art methods on some of these datasets. We also analyze the trajectories predicted by our model to demonstrate the motion behaviour learned by our model
Learning to Predict Human Behavior in Crowded Scenes
Pedestrians follow different trajectories to avoid obstacles and accommodate fellow pedestrians. Any autonomous vehicle navigating such a scene should be able to foresee the future positions of pedestrians and accordingly adjust its path to avoid collisions. This problem of trajectory prediction can be viewed as a sequence generation task, where we are interested in predicting the future trajectory of people based on their past positions. Following the recent success of Recurrent Neural Network (RNN) models for sequence prediction tasks, we propose an LSTM model which can learn general human movement and predict their future trajectories. This is in contrast to traditional approaches which use hand-crafted functions such as Social Forces. We demonstrate the performance of our method on several public datasets. Our model outperforms state-of-the-art methods on some of these datasets. We also analyze the trajectories predicted by our model to demonstrate the motion behavior learned by our model. Moreover, we introduce a new characterization that describes the “social sensitivity” at which two targets interact. We use this characterization to define “navigation styles” and improve both forecasting models and state-of-the-art multi-target tracking – whereby the learned forecasting models help the data association step.VIT
