15,739 research outputs found

    Non-renormalization for the Liouville wave function

    Full text link
    Using an exact functional method, within the framework of the gradient expansion for the Liouville effective action, we show that the kinetic term for the Liouville field is not renormalized.Comment: 13 pages Latex, no figure

    Quasi-isometries Between Groups with Two-Ended Splittings

    Full text link
    We construct `structure invariants' of a one-ended, finitely presented group that describe the way in which the factors of its JSJ decomposition over two-ended subgroups fit together. For groups satisfying two technical conditions, these invariants reduce the problem of quasi-isometry classification of such groups to the problem of relative quasi-isometry classification of the factors of their JSJ decompositions. The first condition is that their JSJ decompositions have two-ended cylinder stabilizers. The second is that every factor in their JSJ decompositions is either `relatively rigid' or `hanging'. Hyperbolic groups always satisfy the first condition, and it is an open question whether they always satisfy the second. The same methods also produce invariants that reduce the problem of classification of one-ended hyperbolic groups up to homeomorphism of their Gromov boundaries to the problem of classification of the factors of their JSJ decompositions up to relative boundary homeomorphism type.Comment: 61pages, 6 figure

    Control of quantum fluctuations for a Yukawa interaction in the Kaluza Klein picture

    Full text link
    We study a system of fermions interacting with a scalar field, in 4+1 dimensions where the 5th dimension is compactified, using an exact functional method, where quantum fluctuations are controlled by the amplitude of the bare fermion mass. The integration of our equationsleads to the properties of the dressed Yukawa coupling, that we study at one-loop so as to show the consistency of the approach. Beyond one loop, the non-perturbative aspect of the method gives us the possibility to derive the dynamical fermion mass. The result obtained is cut off independent and this derivation proposes an alternative to the Schwinger-Dyson approach.Comment: extended discussion on the scalar effective potentia

    Aggregation for Gaussian regression

    Full text link
    This paper studies statistical aggregation procedures in the regression setting. A motivating factor is the existence of many different methods of estimation, leading to possibly competing estimators. We consider here three different types of aggregation: model selection (MS) aggregation, convex (C) aggregation and linear (L) aggregation. The objective of (MS) is to select the optimal single estimator from the list; that of (C) is to select the optimal convex combination of the given estimators; and that of (L) is to select the optimal linear combination of the given estimators. We are interested in evaluating the rates of convergence of the excess risks of the estimators obtained by these procedures. Our approach is motivated by recently published minimax results [Nemirovski, A. (2000). Topics in non-parametric statistics. Lectures on Probability Theory and Statistics (Saint-Flour, 1998). Lecture Notes in Math. 1738 85--277. Springer, Berlin; Tsybakov, A. B. (2003). Optimal rates of aggregation. Learning Theory and Kernel Machines. Lecture Notes in Artificial Intelligence 2777 303--313. Springer, Heidelberg]. There exist competing aggregation procedures achieving optimal convergence rates for each of the (MS), (C) and (L) cases separately. Since these procedures are not directly comparable with each other, we suggest an alternative solution. We prove that all three optimal rates, as well as those for the newly introduced (S) aggregation (subset selection), are nearly achieved via a single ``universal'' aggregation procedure. The procedure consists of mixing the initial estimators with weights obtained by penalized least squares. Two different penalties are considered: one of them is of the BIC type, the second one is a data-dependent 1\ell_1-type penalty.Comment: Published in at http://dx.doi.org/10.1214/009053606000001587 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Coherent Diffractive Imaging Using Randomly Coded Masks

    Full text link
    Coherent diffractive imaging (CDI) provides new opportunities for high resolution X-ray imaging with simultaneous amplitude and phase contrast. Extensions to CDI broaden the scope of the technique for use in a wide variety of experimental geometries and physical systems. Here, we experimentally demonstrate a new extension to CDI that encodes additional information through the use of a series of randomly coded masks. The information gained from the few additional diffraction measurements removes the need for typical object-domain constraints; the algorithm uses prior information about the masks instead. The experiment is performed using a laser diode at 532.2 nm, enabling rapid prototyping for future X-ray synchrotron and even free electron laser experiments. Diffraction patterns are collected with up to 15 different masks placed between a CCD detector and a single sample. Phase retrieval is performed using a convex relaxation routine known as "PhaseCut" followed by a variation on Fienup's input-output algorithm. The reconstruction quality is judged via calculation of phase retrieval transfer functions as well as by an object-space comparison between reconstructions and a lens-based image of the sample. The results of this analysis indicate that with enough masks (in this case 3 or 4) the diffraction phases converge reliably, implying stability and uniqueness of the retrieved solution

    The performance of modularity maximization in practical contexts

    Full text link
    Although widely used in practice, the behavior and accuracy of the popular module identification technique called modularity maximization is not well understood in practical contexts. Here, we present a broad characterization of its performance in such situations. First, we revisit and clarify the resolution limit phenomenon for modularity maximization. Second, we show that the modularity function Q exhibits extreme degeneracies: it typically admits an exponential number of distinct high-scoring solutions and typically lacks a clear global maximum. Third, we derive the limiting behavior of the maximum modularity Q_max for one model of infinitely modular networks, showing that it depends strongly both on the size of the network and on the number of modules it contains. Finally, using three real-world metabolic networks as examples, we show that the degenerate solutions can fundamentally disagree on many, but not all, partition properties such as the composition of the largest modules and the distribution of module sizes. These results imply that the output of any modularity maximization procedure should be interpreted cautiously in scientific contexts. They also explain why many heuristics are often successful at finding high-scoring partitions in practice and why different heuristics can disagree on the modular structure of the same network. We conclude by discussing avenues for mitigating some of these behaviors, such as combining information from many degenerate solutions or using generative models.Comment: 20 pages, 14 figures, 6 appendices; code available at http://www.santafe.edu/~aaronc/modularity
    corecore