4 research outputs found

    What Does “ITS” Say about Hybridization in Lineages of <i>Sarsia</i> (Corynidae, Hydrozoa) from the White Sea?

    No full text
    Hydrozoans are widely known for their complex life cycles. The life cycle usually includes an asexual benthic polyp, which produces a sexual zooid (gonophore). Here, we performed an extensive analysis of 183 specimens of the hydrozoan genus Sarsia from the White Sea and identified four types of gonophores. We also compared the type of gonophore with haplotypes of the molecular markers COI and ITS. Analysis of COI sequences recovered that the studied specimens related to the species S. tubulosa, S. princeps and S. lovenii, and that the S. lovenii specimens divided into two COI haplogroups. More intraspecific genetic diversity was revealed in the analysis of the ITS sequences. The Sarsia tubulosa specimens divided into two ITS haplotypes, and presumably, hybrid forms between these lineages were found. For S. lovenii, we identified 14 ITS haplotypes as a result of allele separation. Intra-individual genetic polymorphism of the ITS region was most likely associated with intraspecific crossing between the different haplotypes. The diversity of the morphotypes was associated with the genetic diversity of the specimens. Thus, we demonstrated that the morphologically variable species S. lovenii is represented in the White Sea by a network of intensively hybridizing haplotypes. Hybridization affects the morphology and maturation period of gonophores and presumably affects the processes of speciation

    The evolutionary history of Brachyury genes in Hydrozoa involves duplications, divergence, and neofunctionalization

    No full text
    Abstract Brachyury, a member of T-box gene family, is widely known for its major role in mesoderm specification in bilaterians. It is also present in non-bilaterian metazoans, such as cnidarians, where it acts as a component of an axial patterning system. In this study, we present a phylogenetic analysis of Brachyury genes within phylum Cnidaria, investigate differential expression and address a functional framework of Brachyury paralogs in hydrozoan Dynamena pumila. Our analysis indicates two duplication events of Brachyury within the cnidarian lineage. The first duplication likely appeared in the medusozoan ancestor, resulting in two copies in medusozoans, while the second duplication arose in the hydrozoan ancestor, resulting in three copies in hydrozoans. Brachyury1 and 2 display a conservative expression pattern marking the oral pole of the body axis in D. pumila. On the contrary, Brachyury3 expression was detected in scattered presumably nerve cells of the D. pumila larva. Pharmacological modulations indicated that Brachyury3 is not under regulation of cWnt signaling in contrast to the other two Brachyury genes. Divergence in expression patterns and regulation suggest neofunctionalization of Brachyury3 in hydrozoans
    corecore