24 research outputs found

    The Isolation, Structure Elucidation and Bioactivity Study of Chilensosides A, A1, B, C, and D, Holostane Triterpene Di-, Tri- and Tetrasulfated Pentaosides from the Sea Cucumber Paracaudina chilensis (Caudinidae, Molpadida)

    No full text
    Five new triterpene (4,4,14-trimethylsterol) di-, tri- and tetrasulfated pentaosides, chilensosides A (1), A1 (2), B (3), C (4), and D (5) were isolated from the Far-Eastern sea cucumber Paracaudina chilensis. The structures were established on the basis of extensive analysis of 1D and 2D NMR spectra and confirmed by HR-ESI-MS data. The structural variability of the glycosides concerned the pentasaccharide chains. Their architecture was characterized by the upper semi-chain consisting of three sugar units and the bottom semi-chain of two sugars. Carbohydrate chains of compounds 2–5 differed in the quantity and positions of sulfate groups. The interesting structural features of the glycosides were: the presence of two sulfate groups at C-4 and C-6 of the same glucose residue in the upper semi-chain of 1, 2, 4, and 5 and the sulfation at C-3 of terminal glucose residue in the bottom semi-chain of 4 that makes its further elongation impossible. Chilensoside D (5) was the sixth tetrasulfated glycoside found in sea cucumbers. The architecture of the sugar chains of chilensosides A–D (1–5), the positions of sulfation, the quantity of sulfate groups, as well as the aglycone structures, demonstrate their similarity to the glycosides of the representatives of the order Dendrochirotida, confirming the phylogenetic closeness of the orders Molpadida and Dendrochirotida. The cytotoxic activities of the compounds 1–5 against human erythrocytes and some cancer cell lines are presented. Disulfated chilensosides A1 (2) and B (3) and trisulfated chilensoside C (4) showed significant cytotoxic activity against human cancer cells

    Triterpene Glycosides from the Far Eastern Sea Cucumber Psolus chitonoides: Chemical Structures and Cytotoxicities of Chitonoidosides E1, F, G, and H

    No full text
    Four new triterpene disulfated glycosides, chitonoidosides E1 (1), F (2), G (3), and H (4), were isolated from the Far-Eastern sea cucumber Psolus chitonoides and collected near Bering Island (Commander Islands) at depths of 100–150 m. Among them there are two hexaosides (1 and 3), differing from each other by the terminal (sixth) sugar residue, one pentaoside (4) and one tetraoside (2), characterized by a glycoside architecture of oligosaccharide chains with shortened bottom semi-chains, which is uncommon for sea cucumbers. Some additional distinctive structural features inherent in 1–4 were also found: the aglycone of a recently discovered new type, with 18(20)-ether bond and lacking a lactone in chitonoidoside G (3), glycoside 3-O-methylxylose residue in chitonoidoside E1 (1), which is rarely detected in sea cucumbers, and sulfated by uncommon position 4 terminal 3-O-methylglucose in chitonoidosides F (2) and H (4). The hemolytic activities of compounds 1–4 and chitonoidoside E against human erythrocytes and their cytotoxic action against the human cancer cell lines, adenocarcinoma HeLa, colorectal adenocarcinoma DLD-1, and monocytes THP-1, were studied. The glycoside with hexasaccharide chains (1, 3 and chitonoidoside E) were the most active against erythrocytes. A similar tendency was observed for the cytotoxicity against adenocarcinoma HeLa cells, but the demonstrated effects were moderate. The monocyte THP-1 cell line and erythrocytes were comparably sensitive to the action of the glycosides, but the activity of chitonoidosides E and E1 (1) significantly differed from that of 3 in relation to THP-1 cells. A tetraoside with a shortened bottom semi-chain, chitonoidoside F (2), displayed the weakest membranolytic effect in the series

    Echinoderms Metabolites: Structure, Functions and Biomedical Perspectives II

    No full text
    Echinoderms belong to the phylum Echinodermata (from the Ancient Greek words “echinos” (hedgehog) and “derma” (skin)) [...

    Anticancer Activity of Sea Cucumber Triterpene Glycosides

    No full text
    Triterpene glycosides are characteristic secondary metabolites of sea cucumbers (Holothurioidea, Echinodermata). They have hemolytic, cytotoxic, antifungal, and other biological activities caused by membranotropic action. These natural products suppress the proliferation of various human tumor cell lines in vitro and, more importantly, intraperitoneal administration in rodents of solutions of some sea cucumber triterpene glycosides significantly reduces both tumor burden and metastasis. The anticancer molecular mechanisms include the induction of tumor cell apoptosis through the activation of intracellular caspase cell death pathways, arrest of the cell cycle at S or G2/M phases, influence on nuclear factors, NF-ÎşB, and up-down regulation of certain cellular receptors and enzymes participating in cancerogenesis, such as EGFR (epidermal growth factor receptor), Akt (protein kinase B), ERK (extracellular signal-regulated kinases), FAK (focal adhesion kinase), MMP-9 (matrix metalloproteinase-9) and others. Administration of some glycosides leads to a reduction of cancer cell adhesion, suppression of cell migration and tube formation in those cells, suppression of angiogenesis, inhibition of cell proliferation, colony formation and tumor invasion. As a result, marked growth inhibition of tumors occurs in vitro and in vivo. Some holothurian triterpene glycosides have the potential to be used as P-gp mediated MDR reversal agents in combined therapy with standard cytostatics

    Chilensosides E, F, and G—New Tetrasulfated Triterpene Glycosides from the Sea Cucumber <i>Paracaudina chilensis</i> (Caudinidae, Molpadida): Structures, Activity, and Biogenesis

    No full text
    Three new tetrasulfated triterpene glycosides, chilensosides E (1), F (2), and G (3), have been isolated from the Far-Eastern sea cucumber Paracaudina chilensis (Caudinidae, Molpadida). The structures were established based on extensive analysis of 1D and 2D NMR spectra and confirmed by HR-ESI-MS data. The compounds differ in their carbohydrate chains, namely in the number of monosaccharide residues (five or six) and in the positions of sulfate groups. Chilensosides E (1) and F (2) are tetrasulfated pentaosides with the position of one of the sulfate groups at C-3 Glc3, and chilensoside G (3) is a tetrasulfated hexaoside. The biogenetic analysis of the glycosides of P. chilensis has revealed that the structures form a network due to the attachment of sulfate groups to almost all possible positions. The upper semi-chain is sulfated earlier in the biosynthetic process than the lower one. Noticeably, the presence of a sulfate group at C-3 Glc3—a terminal monosaccharide residue in the bottom semi-chain of compounds 1 and 2—excludes the possibility of this sugar chain’s further elongation. Presumably, the processes of glycosylation and sulfation are concurrent biosynthetic stages. They can be shifted in time in relation to each other, which is a characteristic feature of the mosaic type of biosynthesis. The hemolytic action of compounds 1–3 against human erythrocytes and cytotoxic activities against five human cancer cell lines were tested. The compounds showed moderate hemolytic activity but were inactive against cancer cells, probably because of their structural peculiarities, such as the combination of positions of four sulfate groups

    Chilensosides E, F, and G&mdash;New Tetrasulfated Triterpene Glycosides from the Sea Cucumber Paracaudina chilensis (Caudinidae, Molpadida): Structures, Activity, and Biogenesis

    No full text
    Three new tetrasulfated triterpene glycosides, chilensosides E (1), F (2), and G (3), have been isolated from the Far-Eastern sea cucumber Paracaudina chilensis (Caudinidae, Molpadida). The structures were established based on extensive analysis of 1D and 2D NMR spectra and confirmed by HR-ESI-MS data. The compounds differ in their carbohydrate chains, namely in the number of monosaccharide residues (five or six) and in the positions of sulfate groups. Chilensosides E (1) and F (2) are tetrasulfated pentaosides with the position of one of the sulfate groups at C-3 Glc3, and chilensoside G (3) is a tetrasulfated hexaoside. The biogenetic analysis of the glycosides of P. chilensis has revealed that the structures form a network due to the attachment of sulfate groups to almost all possible positions. The upper semi-chain is sulfated earlier in the biosynthetic process than the lower one. Noticeably, the presence of a sulfate group at C-3 Glc3&mdash;a terminal monosaccharide residue in the bottom semi-chain of compounds 1 and 2&mdash;excludes the possibility of this sugar chain&rsquo;s further elongation. Presumably, the processes of glycosylation and sulfation are concurrent biosynthetic stages. They can be shifted in time in relation to each other, which is a characteristic feature of the mosaic type of biosynthesis. The hemolytic action of compounds 1&ndash;3 against human erythrocytes and cytotoxic activities against five human cancer cell lines were tested. The compounds showed moderate hemolytic activity but were inactive against cancer cells, probably because of their structural peculiarities, such as the combination of positions of four sulfate groups

    Triterpene Glycosides from the Far Eastern Sea Cucumber Thyonidium (=Duasmodactyla) kurilensis (Levin): The Structures, Cytotoxicities, and Biogenesis of Kurilosides A3, D1, G, H, I, I1, J, K, and K1

    No full text
    Nine new mono-, di-, and trisulfated triterpene penta- and hexaosides, kurilosides A3 (1), D1 (2), G (3), H (4), I (5), I1 (6), J (7), K (8), and K1 (9) and two desulfated derivatives, DS-kuriloside L (10), having a trisaccharide branched chain, and DS-kuriloside M (11), having hexa-nor-lanostane aglycone with a 7(8)-double bond, have been isolated from the Far-Eastern deep-water sea cucumber Thyonidium (=Duasmodactyla) kurilensis (Levin) and their structures were elucidated based on 2D NMR spectroscopy and HR-ESI mass-spectrometry. Five earlier unknown carbohydrate chains and two aglycones (having a 16β,(20S)-dihydroxy-fragment and a 16β-acetoxy,(20S)-hydroxy fragment) were found in these glycosides. All the glycosides 1–9 have a sulfate group at C-6 Glc, attached to C-4 Xyl1, while the positions of the other sulfate groups vary in different groups of kurilosides. The analysis of the structural features of the aglycones and the carbohydrate chains of all the glycosides of T. kurilensis showed their biogenetic relationships. Cytotoxic activities of the compounds 1–9 against mouse neuroblastoma Neuro 2a, normal epithelial JB-6 cells, and erythrocytes were studied. The highest cytotoxicity in the series was demonstrated by trisulfated hexaoside kuriloside H (4), having acetoxy-groups at C(16) and C(20), the latter one obviously compensated the absence of a side chain, essential for the membranolytic action of the glycosides. Kuriloside I1 (6), differing from 4 in the lacking of a terminal glucose residue in the bottom semi-chain, was slightly less active. The compounds 1–3, 5, and 8 did not demonstrate cytotoxic activity due to the presence of hydroxyl groups in their aglycones

    Kurilosides A1, A2, C1, D, E and F—Triterpene Glycosides from the Far Eastern Sea Cucumber Thyonidium (= Duasmodactyla) kurilensis (Levin): Structures with Unusual Non-Holostane Aglycones and Cytotoxicities

    No full text
    Six new monosulfated triterpene tetra-, penta- and hexaosides, namely, the kurilosides A1 (1), A2 (2), C1 (3), D (4), E (5) and F (6), as well as the known earlier kuriloside A (7), having unusual non-holostane aglycones without lactone, have been isolated from the sea cucumber Thyonidium (= Duasmodactyla) kurilensis (Levin) (Cucumariidae, Dendrochirotida), collected in the Sea of Okhotsk near Onekotan Island from a depth of 100 m. Structures of the glycosides were established by 2D NMR spectroscopy and HR-ESI mass spectrometry. Kurilosides of the groups A and E contain carbohydrate moieties with a rare architecture (a pentasaccharide branched by C(4) Xyl1), differing from each other in the second monosaccharide residue (quinovose or glucose, correspondingly); kurilosides of the group C are characterized by a unique tetrasaccharide branched by a C(4) Xyl1 sugar chain; and kurilosides of the groups D and F are hexaosides differing from each other in the presence of an O-methyl group in the fourth (terminal) sugar unit. All these glycosides contain a sulfate group at C-6 of the glucose residue attached to C-4 Xyl1 and the non-holostane aglycones have a 9(11) double bond and lack &gamma;-lactone. The cytotoxic activities of compounds 1&ndash;7 against mouse neuroblastoma Neuro 2a, normal epithelial JB-6 cells and erythrocytes were studied. Kuriloside A1 (1) was the most active compound in the series, demonstrating strong cytotoxicity against the erythrocytes and JB-6 cells and a moderate effect against Neuro 2a cells
    corecore