15 research outputs found
Virulence Associated Gene 8 of Bordetella pertussis Enhances Contact System Activity by Inhibiting the Regulatory Function of Complement Regulator C1 Inhibitor.
Bordetella pertussis is a Gram-negative bacterium and the causative agent of whooping cough. Whooping cough is currently re-emerging worldwide and, therefore, still poses a continuous global health threat. B. pertussis expresses several virulence factors that play a role in evading the human immune response. One of these virulence factors is virulence associated gene 8 (Vag8). Vag8 is a complement evasion molecule that mediates its effects by binding to the complement regulator C1 inhibitor (C1-INH). This regulatory protein is a fluid phase serine protease that controls proenzyme activation and enzyme activity of not only the complement system but also the contact system. Activation of the contact system results in the generation of bradykinin, a pro-inflammatory peptide. Here, the activation of the contact system by B. pertussis was explored. We demonstrate that recombinant as well as endogenous Vag8 enhanced contact system activity by binding C1-INH and attenuating its inhibitory function. Moreover, we show that B. pertussis itself is able to activate the contact system. This activation was dependent on Vag8 production as a Vag8 knockout B. pertussis strain was unable to activate the contact system. These findings show a previously overlooked interaction between the contact system and the respiratory pathogen B. pertussis. Activation of the contact system by B. pertussis may contribute to its pathogenicity and virulence
26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017
This work was produced as part of the activities of FAPESP Research,\ud
Disseminations and Innovation Center for Neuromathematics (grant\ud
2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud
FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud
supported by a CNPq fellowship (grant 306251/2014-0)
25th annual computational neuroscience meeting: CNS-2016
The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong
Human TRIM5α: Autophagy Connects Cell-Intrinsic HIV-1 Restriction and Innate Immune Sensor Functioning
Human immunodeficiency virus-1 (HIV-1) persists as a global health concern, with an incidence rate of approximately 2 million, and estimated global prevalence of over 35 million. Combination antiretroviral treatment is highly effective, but HIV-1 patients that have been treated still suffer from chronic inflammation and residual viral replication. It is therefore paramount to identify therapeutically efficacious strategies to eradicate viral reservoirs and ultimately develop a cure for HIV-1. It has been long accepted that the restriction factor tripartite motif protein 5 isoform alpha (TRIM5α) restricts HIV-1 infection in a species-specific manner, with rhesus macaque TRIM5α strongly restricting HIV-1, and human TRIM5α having a minimal restriction capacity. However, several recent studies underscore human TRIM5α as a cell-dependent HIV-1 restriction factor. Here, we present an overview of the latest research on human TRIM5α and propose a novel conceptualization of TRIM5α as a restriction factor with a varied portfolio of antiviral functions, including mediating HIV-1 degradation through autophagy- and proteasome-mediated mechanisms, and acting as a viral sensor and effector of antiviral signaling. We have also expanded on the protective antiviral roles of autophagy and outline the therapeutic potential of autophagy modulation to intervene in chronic HIV-1 infection
Virulence Associated Gene 8 of Enhances Contact System Activity by Inhibiting the Regulatory Function of Complement Regulator C1 Inhibitor
Bordetella pertussis is a Gram-negative bacterium and the causative agent of whooping cough. Whooping cough is currently re-emerging worldwide and, therefore, still poses a continuous global health threat. B. pertussis expresses several virulence factors that play a role in evading the human immune response. One of these virulence factors is virulence associated gene 8 (Vag8). Vag8 is a complement evasion molecule that mediates its effects by binding to the complement regulator C1 inhibitor (C1-INH). This regulatory protein is a fluid phase serine protease that controls proenzyme activation and enzyme activity of not only the complement system but also the contact system. Activation of the contact system results in the generation of bradykinin, a pro-inflammatory peptide. Here, the activation of the contact system by B. pertussis was explored. We demonstrate that recombinant as well as endogenous Vag8 enhanced contact system activity by binding C1-INH and attenuating its inhibitory function. Moreover, we show that B. pertussis itself is able to activate the contact system. This activation was dependent on Vag8 production as a Vag8 knockout B. pertussis strain was unable to activate the contact system. These findings show a previously overlooked interaction between the contact system and the respiratory pathogen B. pertussis. Activation of the contact system by B. pertussis may contribute to its pathogenicity and virulence
Image_2_Virulence Associated Gene 8 of Bordetella pertussis Enhances Contact System Activity by Inhibiting the Regulatory Function of Complement Regulator C1 Inhibitor.TIF
<p>Bordetella pertussis is a Gram-negative bacterium and the causative agent of whooping cough. Whooping cough is currently re-emerging worldwide and, therefore, still poses a continuous global health threat. B. pertussis expresses several virulence factors that play a role in evading the human immune response. One of these virulence factors is virulence associated gene 8 (Vag8). Vag8 is a complement evasion molecule that mediates its effects by binding to the complement regulator C1 inhibitor (C1-INH). This regulatory protein is a fluid phase serine protease that controls proenzyme activation and enzyme activity of not only the complement system but also the contact system. Activation of the contact system results in the generation of bradykinin, a pro-inflammatory peptide. Here, the activation of the contact system by B. pertussis was explored. We demonstrate that recombinant as well as endogenous Vag8 enhanced contact system activity by binding C1-INH and attenuating its inhibitory function. Moreover, we show that B. pertussis itself is able to activate the contact system. This activation was dependent on Vag8 production as a Vag8 knockout B. pertussis strain was unable to activate the contact system. These findings show a previously overlooked interaction between the contact system and the respiratory pathogen B. pertussis. Activation of the contact system by B. pertussis may contribute to its pathogenicity and virulence.</p
Image_1_Virulence Associated Gene 8 of Bordetella pertussis Enhances Contact System Activity by Inhibiting the Regulatory Function of Complement Regulator C1 Inhibitor.TIF
<p>Bordetella pertussis is a Gram-negative bacterium and the causative agent of whooping cough. Whooping cough is currently re-emerging worldwide and, therefore, still poses a continuous global health threat. B. pertussis expresses several virulence factors that play a role in evading the human immune response. One of these virulence factors is virulence associated gene 8 (Vag8). Vag8 is a complement evasion molecule that mediates its effects by binding to the complement regulator C1 inhibitor (C1-INH). This regulatory protein is a fluid phase serine protease that controls proenzyme activation and enzyme activity of not only the complement system but also the contact system. Activation of the contact system results in the generation of bradykinin, a pro-inflammatory peptide. Here, the activation of the contact system by B. pertussis was explored. We demonstrate that recombinant as well as endogenous Vag8 enhanced contact system activity by binding C1-INH and attenuating its inhibitory function. Moreover, we show that B. pertussis itself is able to activate the contact system. This activation was dependent on Vag8 production as a Vag8 knockout B. pertussis strain was unable to activate the contact system. These findings show a previously overlooked interaction between the contact system and the respiratory pathogen B. pertussis. Activation of the contact system by B. pertussis may contribute to its pathogenicity and virulence.</p
Autophagy-enhancing drugs limit mucosal HIV-1 acquisition and suppress viral replication ex vivo
Current direct-acting antiviral therapies are highly effective in suppressing HIV-1 replication. However, mucosal inflammation undermines prophylactic treatment efficacy, and HIV-1 persists in long-lived tissue-derived dendritic cells (DCs) and CD4+ T cells of treated patients. Host-directed strategies are an emerging therapeutic approach to improve therapy outcomes in infectious diseases. Autophagy functions as an innate antiviral mechanism by degrading viruses in specialized vesicles. Here, we investigated the impact of pharmaceutically enhancing autophagy on HIV-1 acquisition and viral replication. To this end, we developed a human tissue infection model permitting concurrent analysis of HIV-1 cellular targets ex vivo. Prophylactic treatment with autophagy-enhancing drugs carbamazepine and everolimus promoted HIV-1 restriction in skin-derived CD11c+ DCs and CD4+ T cells. Everolimus also decreased HIV-1 susceptibility to lab-adapted and transmitted/founder HIV-1 strains, and in vaginal Langerhans cells. Notably, we observed cell-specific effects of therapeutic treatment. Therapeutic rapamycin treatment suppressed HIV-1 replication in tissue-derived CD11c+ DCs, while all selected drugs limited viral replication in CD4+ T cells. Strikingly, both prophylactic and therapeutic treatment with everolimus or rapamycin reduced intestinal HIV-1 productive infection. Our findings highlight host autophagy pathways as an emerging target for HIV-1 therapies, and underscore the relevancy of repurposing clinically-approved autophagy drugs to suppress mucosal HIV-1 replication
Berbamine suppresses intestinal SARS-CoV-2 infection via a BNIP3-dependent autophagy blockade
ABSTRACTSARS-CoV-2, the causative virus of COVID-19, continues to threaten global public health. COVID-19 is a multi-organ disease, causing not only respiratory distress, but also extrapulmonary manifestations, including gastrointestinal symptoms with SARS-CoV-2 RNA shedding in stool long after respiratory clearance. Despite global vaccination and existing antiviral treatments, variants of concern are still emerging and circulating. Of note, new Omicron BA.5 sublineages both increasingly evade neutralizing antibodies and demonstrate an increased preference for entry via the endocytic entry route. Alternative to direct-acting antivirals, host-directed therapies interfere with host mechanisms hijacked by viruses, and enhance cell-mediated resistance with a reduced likelihood of drug resistance development. Here, we demonstrate that the autophagy-blocking therapeutic berbamine dihydrochloride robustly prevents SARS-CoV-2 acquisition by human intestinal epithelial cells via an autophagy-mediated BNIP3 mechanism. Strikingly, berbamine dihydrochloride exhibited pan-antiviral activity against Omicron subvariants BA.2 and BA.5 at nanomolar potency, providing a proof of concept for the potential for targeting autophagy machinery to thwart infection of current circulating SARS-CoV-2 subvariants. Furthermore, we show that autophagy-blocking therapies limited virus-induced damage to intestinal barrier function, affirming the therapeutic relevance of autophagy manipulation to avert the intestinal permeability associated with acute COVID-19 and post-COVID-19 syndrome. Our findings underscore that SARS-CoV-2 exploits host autophagy machinery for intestinal dissemination and indicate that repurposed autophagy-based antivirals represent a pertinent therapeutic option to boost protection and ameliorate disease pathogenesis against current and future SARS-CoV-2 variants of concern
25th Annual Computational Neuroscience Meeting: CNS-2016
Table of contents
A1 Functional advantages of cell-type heterogeneity in neural circuits
Tatyana O. Sharpee
A2 Mesoscopic modeling of propagating waves in visual cortex
Alain Destexhe
A3 Dynamics and biomarkers of mental disorders
Mitsuo Kawato
F1 Precise recruitment of spiking output at theta frequencies requires dendritic h-channels in multi-compartment models of oriens-lacunosum/moleculare hippocampal interneurons
Vladislav Sekulić, Frances K. Skinner
F2 Kernel methods in reconstruction of current sources from extracellular potentials for single cells and the whole brains
Daniel K. Wójcik, Chaitanya Chintaluri, Dorottya Cserpán, Zoltán Somogyvári
F3 The synchronized periods depend on intracellular transcriptional repression mechanisms in circadian clocks.
Jae Kyoung Kim, Zachary P. Kilpatrick, Matthew R. Bennett, Kresimir Josić
O1 Assessing irregularity and coordination of spiking-bursting rhythms in central pattern generators
Irene Elices, David Arroyo, Rafael Levi, Francisco B. Rodriguez, Pablo Varona
O2 Regulation of top-down processing by cortically-projecting parvalbumin positive neurons in basal forebrain
Eunjin Hwang, Bowon Kim, Hio-Been Han, Tae Kim, James T. McKenna, Ritchie E. Brown, Robert W. McCarley, Jee Hyun Choi
O3 Modeling auditory stream segregation, build-up and bistability
James Rankin, Pamela Osborn Popp, John Rinzel
O4 Strong competition between tonotopic neural ensembles explains pitch-related dynamics of auditory cortex evoked fields
Alejandro Tabas, André Rupp, Emili Balaguer-Ballester
O5 A simple model of retinal response to multi-electrode stimulation
Matias I. Maturana, David B. Grayden, Shaun L. Cloherty, Tatiana Kameneva, Michael R. Ibbotson, Hamish Meffin
O6 Noise correlations in V4 area correlate with behavioral performance in visual discrimination task
Veronika Koren, Timm Lochmann, Valentin Dragoi, Klaus Obermayer
O7 Input-location dependent gain modulation in cerebellar nucleus neurons
Maria Psarrou, Maria Schilstra, Neil Davey, Benjamin Torben-Nielsen, Volker Steuber
O8 Analytic solution of cable energy function for cortical axons and dendrites
Huiwen Ju, Jiao Yu, Michael L. Hines, Liang Chen, Yuguo Yu
O9 C. elegans interactome: interactive visualization of Caenorhabditis elegans worm neuronal network
Jimin Kim, Will Leahy, Eli Shlizerman
O10 Is the model any good? Objective criteria for computational neuroscience model selection
Justas Birgiolas, Richard C. Gerkin, Sharon M. Crook
O11 Cooperation and competition of gamma oscillation mechanisms
Atthaphon Viriyopase, Raoul-Martin Memmesheimer, Stan Gielen
O12 A discrete structure of the brain waves
Yuri Dabaghian, Justin DeVito, Luca Perotti
O13 Direction-specific silencing of the Drosophila gaze stabilization system
Anmo J. Kim, Lisa M. Fenk, Cheng Lyu, Gaby Maimon
O14 What does the fruit fly think about values? A model of olfactory associative learning
Chang Zhao, Yves Widmer, Simon Sprecher,Walter Senn
O15 Effects of ionic diffusion on power spectra of local field potentials (LFP)
Geir Halnes, Tuomo Mäki-Marttunen, Daniel Keller, Klas H. Pettersen,Ole A. Andreassen, Gaute T. Einevoll
O16 Large-scale cortical models towards understanding relationship between brain structure abnormalities and cognitive deficits
Yasunori Yamada
O17 Spatial coarse-graining the brain: origin of minicolumns
Moira L. Steyn-Ross, D. Alistair Steyn-Ross
O18 Modeling large-scale cortical networks with laminar structure
Jorge F. Mejias, John D. Murray, Henry Kennedy, Xiao-Jing Wang
O19 Information filtering by partial synchronous spikes in a neural population
Alexandra Kruscha, Jan Grewe, Jan Benda, Benjamin Lindner
O20 Decoding context-dependent olfactory valence in Drosophila
Laurent Badel, Kazumi Ohta, Yoshiko Tsuchimoto, Hokto Kazama
P1 Neural network as a scale-free network: the role of a hub
B. Kahng
P2 Hemodynamic responses to emotions and decisions using near-infrared spectroscopy optical imaging
Nicoladie D. Tam
P3 Phase space analysis of hemodynamic responses to intentional movement directions using functional near-infrared spectroscopy (fNIRS) optical imaging technique
Nicoladie D.Tam, Luca Pollonini, George Zouridakis
P4 Modeling jamming avoidance of weakly electric fish
Jaehyun Soh, DaeEun Kim
P5 Synergy and redundancy of retinal ganglion cells in prediction
Minsu Yoo, S. E. Palmer
P6 A neural field model with a third dimension representing cortical depth
Viviana Culmone, Ingo Bojak
P7 Network analysis of a probabilistic connectivity model of the Xenopus tadpole spinal cord
Andrea Ferrario, Robert Merrison-Hort, Roman Borisyuk
P8 The recognition dynamics in the brain
Chang Sub Kim
P9 Multivariate spike train analysis using a positive definite kernel
Taro Tezuka
P10 Synchronization of burst periods may govern slow brain dynamics during general anesthesia
Pangyu Joo
P11 The ionic basis of heterogeneity affects stochastic synchrony
Young-Ah Rho, Shawn D. Burton, G. Bard Ermentrout, Jaeseung Jeong, Nathaniel N. Urban
P12 Circular statistics of noise in spike trains with a periodic component
Petr Marsalek
P14 Representations of directions in EEG-BCI using Gaussian readouts
Hoon-Hee Kim, Seok-hyun Moon, Do-won Lee, Sung-beom Lee, Ji-yong Lee, Jaeseung Jeong
P15 Action selection and reinforcement learning in basal ganglia during reaching movements
Yaroslav I. Molkov, Khaldoun Hamade, Wondimu Teka, William H. Barnett, Taegyo Kim, Sergey Markin, Ilya A. Rybak
P17 Axon guidance: modeling axonal growth in T-Junction assay
Csaba Forro, Harald Dermutz, László Demkó, János Vörös
P19 Transient cell assembly networks encode persistent spatial memories
Yuri Dabaghian, Andrey Babichev
P20 Theory of population coupling and applications to describe high order correlations in large populations of interacting neurons
Haiping Huang
P21 Design of biologically-realistic simulations for motor control
Sergio Verduzco-Flores
P22 Towards understanding the functional impact of the behavioural variability of neurons
Filipa Dos Santos, Peter Andras
P23 Different oscillatory dynamics underlying gamma entrainment deficits in schizophrenia
Christoph Metzner, Achim Schweikard, Bartosz Zurowski
P24 Memory recall and spike frequency adaptation
James P. Roach, Leonard M. Sander, Michal R. Zochowski
P25 Stability of neural networks and memory consolidation preferentially occur near criticality
Quinton M. Skilling, Nicolette Ognjanovski, Sara J. Aton, Michal Zochowski
P26 Stochastic Oscillation in Self-Organized Critical States of Small Systems: Sensitive Resting State in Neural Systems
Sheng-Jun Wang, Guang Ouyang, Jing Guang, Mingsha Zhang, K. Y. Michael Wong, Changsong Zhou
P27 Neurofield: a C++ library for fast simulation of 2D neural field models
Peter A. Robinson, Paula Sanz-Leon, Peter M. Drysdale, Felix Fung, Romesh G. Abeysuriya, Chris J. Rennie, Xuelong Zhao
P28 Action-based grounding: Beyond encoding/decoding in neural code
Yoonsuck Choe, Huei-Fang Yang
P29 Neural computation in a dynamical system with multiple time scales
Yuanyuan Mi, Xiaohan Lin, Si Wu
P30 Maximum entropy models for 3D layouts of orientation selectivity
Joscha Liedtke, Manuel Schottdorf, Fred Wolf
P31 A behavioral assay for probing computations underlying curiosity in rodents
Yoriko Yamamura, Jeffery R. Wickens
P32 Using statistical sampling to balance error function contributions to optimization of conductance-based models
Timothy Rumbell, Julia Ramsey, Amy Reyes, Danel Draguljić, Patrick R. Hof, Jennifer Luebke, Christina M. Weaver
P33 Exploration and implementation of a self-growing and self-organizing neuron network building algorithm
Hu He, Xu Yang, Hailin Ma, Zhiheng Xu, Yuzhe Wang
P34 Disrupted resting state brain network in obese subjects: a data-driven graph theory analysis
Kwangyeol Baek, Laurel S. Morris, Prantik Kundu, Valerie Voon
P35 Dynamics of cooperative excitatory and inhibitory plasticity
Everton J. Agnes, Tim P. Vogels
P36 Frequency-dependent oscillatory signal gating in feed-forward networks of integrate-and-fire neurons
William F. Podlaski, Tim P. Vogels
P37 Phenomenological neural model for adaptation of neurons in area IT
Martin Giese, Pradeep Kuravi, Rufin Vogels
P38 ICGenealogy: towards a common topology of neuronal ion channel function and genealogy in model and experiment
Alexander Seeholzer, William Podlaski, Rajnish Ranjan, Tim Vogels
P39 Temporal input discrimination from the interaction between dynamic synapses and neural subthreshold oscillations
Joaquin J. Torres, Fabiano Baroni, Roberto Latorre, Pablo Varona
P40 Different roles for transient and sustained activity during active visual processing
Bart Gips, Eric Lowet, Mark J. Roberts, Peter de Weerd, Ole Jensen, Jan van der Eerden
P41 Scale-free functional networks of 2D Ising model are highly robust against structural defects: neuroscience implications
Abdorreza Goodarzinick, Mohammad D. Niry, Alireza Valizadeh
P42 High frequency neuron can facilitate propagation of signal in neural networks
Aref Pariz, Shervin S. Parsi, Alireza Valizadeh
P43 Investigating the effect of Alzheimer’s disease related amyloidopathy on gamma oscillations in the CA1 region of the hippocampus
Julia M. Warburton, Lucia Marucci, Francesco Tamagnini, Jon Brown, Krasimira Tsaneva-Atanasova
P44 Long-tailed distributions of inhibitory and excitatory weights in a balanced network with eSTDP and iSTDP
Florence I. Kleberg, Jochen Triesch
P45 Simulation of EMG recording from hand muscle due to TMS of motor cortex
Bahar Moezzi, Nicolangelo Iannella, Natalie Schaworonkow, Lukas Plogmacher, Mitchell R. Goldsworthy, Brenton Hordacre, Mark D. McDonnell, Michael C. Ridding, Jochen Triesch
P46 Structure and dynamics of axon network formed in primary cell culture
Martin Zapotocky, Daniel Smit, Coralie Fouquet, Alain Trembleau
P47 Efficient signal processing and sampling in random networks that generate variability
Sakyasingha Dasgupta, Isao Nishikawa, Kazuyuki Aihara, Taro Toyoizumi
P48 Modeling the effect of riluzole on bursting in respiratory neural networks
Daniel T. Robb, Nick Mellen, Natalia Toporikova
P49 Mapping relaxation training using effective connectivity analysis
Rongxiang Tang, Yi-Yuan Tang
P50 Modeling neuron oscillation of implicit sequence learning
Guangsheng Liang, Seth A. Kiser, James H. Howard, Jr., Yi-Yuan Tang
P51 The role of cerebellar short-term synaptic plasticity in the pathology and medication of downbeat nystagmus
Julia Goncharenko, Neil Davey, Maria Schilstra, Volker Steuber
P52 Nonlinear response of noisy neurons
Sergej O. Voronenko, Benjamin Lindner
P53 Behavioral embedding suggests multiple chaotic dimensions underlie C. elegans locomotion
Tosif Ahamed, Greg Stephens
P54 Fast and scalable spike sorting for large and dense multi-electrodes recordings
Pierre Yger, Baptiste Lefebvre, Giulia Lia Beatrice Spampinato, Elric Esposito, Marcel Stimberg et Olivier Marre
P55 Sufficient sampling rates for fast hand motion tracking
Hansol Choi, Min-Ho Song
P56 Linear readout of object manifolds
SueYeon Chung, Dan D. Lee, Haim Sompolinsky
P57 Differentiating models of intrinsic bursting and rhythm generation of the respiratory pre-Bötzinger complex using phase response curves
Ryan S. Phillips, Jeffrey Smith
P58 The effect of inhibitory cell network interactions during theta rhythms on extracellular field potentials in CA1 hippocampus
Alexandra Pierri Chatzikalymniou, Katie Ferguson, Frances K. Skinner
P59 Expansion recoding through sparse sampling in the cerebellar input layer speeds learning
N. Alex Cayco Gajic, Claudia Clopath, R. Angus Silver
P60 A set of curated cortical models at multiple scales on Open Source Brain
Padraig Gleeson, Boris Marin, Sadra Sadeh, Adrian Quintana, Matteo Cantarelli, Salvador Dura-Bernal, William W. Lytton, Andrew Davison, R. Angus Silver
P61 A synaptic story of dynamical information encoding in neural adaptation
Luozheng Li, Wenhao Zhang, Yuanyuan Mi, Dahui Wang, Si Wu
P62 Physical modeling of rule-observant rodent behavior
Youngjo Song, Sol Park, Ilhwan Choi, Jaeseung Jeong, Hee-sup Shin
P64 Predictive coding in area V4 and prefrontal cortex explains dynamic discrimination of partially occluded shapes
Hannah Choi, Anitha Pasupathy, Eric Shea-Brown
P65 Stability of FORCE learning on spiking and rate-based networks
Dongsung Huh, Terrence J. Sejnowski
P66 Stabilising STDP in striatal neurons for reliable fast state recognition in noisy environments
Simon M. Vogt, Arvind Kumar, Robert Schmidt
P67 Electrodiffusion in one- and two-compartment neuron models for characterizing cellular effects of electrical stimulation
Stephen Van Wert, Steven J. Schiff
P68 STDP improves speech recognition capabilities in spiking recurrent circuits parameterized via differential evolution Markov Chain Monte Carlo
Richard Veale, Matthias Scheutz
P69 Bidirectional transformation between dominant cortical neural activities and phase difference distributions
Sang Wan Lee
P70 Maturation of sensory networks through homeostatic structural plasticity
Júlia Gallinaro, Stefan Rotter
P71 Corticothalamic dynamics: structure, number of solutions and stability of steady-state solutions in the space of synaptic couplings
Paula Sanz-Leon, Peter A. Robinson
P72 Optogenetic versus electrical stimulation of the parkinsonian basal ganglia. Computational study
Leonid L. Rubchinsky, Chung Ching Cheung, Shivakeshavan Ratnadurai-Giridharan
P73 Exact spike-timing distribution reveals higher-order interactions of neurons
Safura Rashid Shomali, Majid Nili Ahmadabadi, Hideaki Shimazaki, S. Nader Rasuli
P74 Neural mechanism of visual perceptual learning using a multi-layered neural network
Xiaochen Zhao, Malte J. Rasch
P75 Inferring collective spiking dynamics from mostly unobserved systems
Jens Wilting, Viola Priesemann
P76 How to infer distributions in the brain from subsampled observations
Anna Levina, Viola Priesemann
P77 Influences of embedding and estimation strategies on the inferred memory of single spiking neurons
Lucas Rudelt, Joseph T. Lizier, Viola Priesemann
P78 A nearest-neighbours based estimator for transfer entropy between spike trains
Joseph T. Lizier, Richard E. Spinney, Mikail Rubinov, Michael Wibral, Viola Priesemann
P79 Active learning of psychometric functions with multinomial logistic models
Ji Hyun Bak, Jonathan Pillow
P81 Inferring low-dimensional network dynamics with variational latent Gaussian process
Yuan Zaho, Il Memming Park
P82 Computational investigation of energy landscapes in the resting state subcortical brain network
Jiyoung Kang, Hae-Jeong Park
P83 Local repulsive interaction between retinal ganglion cells can generate a consistent spatial periodicity of orientation map
Jaeson Jang, Se-Bum Paik
P84 Phase duration of bistable perception reveals intrinsic time scale of perceptual decision under noisy condition
Woochul Choi, Se-Bum Paik
P85 Feedforward convergence between retina and primary visual cortex can determine the structure of orientation map
Changju Lee, Jaeson Jang, Se-Bum Paik
P86 Computational method classifying neural network activity patterns for imaging data
Min Song, Hyeonsu Lee, Se-Bum Paik
P87 Symmetry of spike-timing-dependent-plasticity kernels regulates volatility of memory
Youngjin Park, Woochul Choi, Se-Bum Paik
P88 Effects of time-periodic coupling strength on the first-spike latency dynamics of a scale-free network of stochastic Hodgkin-Huxley neurons
Ergin Yilmaz, Veli Baysal, Mahmut Ozer
P89 Spectral properties of spiking responses in V1 and V4 change within the trial and are highly relevant for behavioral performance
Veronika Koren, Klaus Obermayer
P90 Methods for building accurate models of individual neurons
Daniel Saska, Thomas Nowotny
P91 A full size mathematical model of the early olfactory system of honeybees
Ho Ka Chan, Alan Diamond, Thomas Nowotny
P92 Stimulation-induced tuning of ongoing oscillations in spiking neural networks
Christoph S. Herrmann, Micah M. Murray, Silvio Ionta, Axel Hutt, Jérémie Lefebvre
P93 Decision-specific sequences of neural activity in balanced random networks driven by structured sensory input
Philipp Weidel, Renato Duarte, Abigail Morrison
P94 Modulation of tuning induced by abrupt reduction of SST cell activity
Jung H. Lee, Ramakrishnan Iyer, Stefan Mihalas
P95 The functional role of VIP cell activation during locomotion
Jung H. Lee, Ramakrishnan Iyer, Christof Koch, Stefan Mihalas
P96 Stochastic inference with spiking neural networks
Mihai A. Petrovici, Luziwei Leng, Oliver Breitwieser, David Stöckel, Ilja Bytschok, Roman Martel, Johannes Bill, Johannes Schemmel, Karlheinz Meier
P97 Modeling orientation-selective electrical stimulation with retinal prostheses
Timothy B. Esler, Anthony N. Burkitt, David B. Grayden, Robert R. Kerr, Bahman Tahayori, Hamish Meffin
P98 Ion channel noise can explain firing correlation in auditory nerves
Bahar Moezzi, Nicolangelo Iannella, Mark D. McDonnell
P99 Limits of temporal encoding of thalamocortical inputs in a neocortical microcircuit
Max Nolte, Michael W. Reimann, Eilif Muller, Henry Markram
P100 On the representation of arm reaching movements: a computational model
Antonio Parziale, Rosa Senatore, Angelo Marcelli
P101 A computational model for investigating the role of cerebellum in acquisition and retention of motor behavior
Rosa Senatore, Antonio Parziale, Angelo Marcelli
P102 The emergence of semantic categories from a large-scale brain network of semantic knowledge
K. Skiker, M. Maouene
P103 Multiscale modeling of M1 multitarget pharmacotherapy for dystonia
Samuel A. Neymotin, Salvador Dura-Bernal, Alexandra Seidenstein, Peter Lakatos, Terence D. Sanger, William W. Lytton
P104 Effect of network size on computational capacity
Salvador Dura-Bernal, Rosemary J. Menzies, Campbell McLauchlan, Sacha J. van Albada, David J. Kedziora, Samuel Neymotin, William W. Lytton, Cliff C. Kerr
P105 NetPyNE: a Python package for NEURON to facilitate development and parallel simulation of biological neuronal networks
Salvador Dura-Bernal, Benjamin A. Suter, Samuel A. Neymotin, Cliff C. Kerr, Adrian Quintana, Padra