3 research outputs found

    Statistical Aspects of Environmental Risk Assessment of GM Plants for effects on Non-Target Organisms

    Get PDF
    Previous European guidance for environmental risk assessment of genetically modified plants emphasized the concepts of statistical power but provided no explicit requirements for the provision of statistical power analyses. Similarly, whilst the need for good experimental designs was stressed, no minimum guidelines were set for replication or sample sizes. Furthermore, although substantial equivalence was stressed as central to risk assessment, no means of quantification of this concept was given. This paper suggests several ways in which existing guidance might be revised to address these problems. One approach explored is the ‘bioequivalence’ test, which has the advantage that the error of most concern to the consumer may be set relatively easily. Also, since the burden of proof is placed on the experimenter, the test promotes high-quality, well-replicated experiments with sufficient statistical power. Other recommendations cover the specification of effect sizes, the choice of appropriate comparators, the use of positive controls, meta-analyses, multivariate analysis and diversity indices. Specific guidance is suggested for experimental designs of field trials and their statistical analyses. A checklist for experimental design is proposed to accompany all environmental risk assessments

    Statistical aspects of environmental risk assessment of GM plants for effects on non-target organisms

    No full text
    Previous European guidance for environmental risk assessment of genetically modified plants emphasized the concepts of statistical power but provided no explicit requirements for the provision of statistical power analyses. Similarly, whilst the need for good experimental designs was stressed, no minimum guidelines were set for replication or sample sizes. Furthermore, although substantial equivalence was stressed as central to risk assessment, no means of quantification of this concept was given. This paper suggests several ways in which existing guidance might be revised to address these problems. One approach explored is the `bioequivalence' test, which has the advantage that the error of most concern to the consumer may be set relatively easily. Also, since the burden of proof is placed on the experimenter, the test promotes high-quality, well-replicated experiments with sufficient statistical power. Other recommendations cover the specification of effect sizes, the choice of appropriate comparators, the use of positive controls, meta-analyses, multivariate analysis and diversity indices. Specific guidance is suggested for experimental designs of field trials and their statistical analyses. A checklist for experimental design is proposed to accompany all environmental risk assessments.This is an article from Environmental Biosafety Research 8 (2009): 65, doi:10.1051/ebr/2009009. Posted with permission.</p
    corecore