10 research outputs found

    Targeting of Magnetic Nanoparticle-coated Microbubbles to the Vascular Wall Empowers Site-specific Lentiviral Gene Delivery in vivo

    Get PDF
    In the field of vascular gene therapy, targeting systems are promising advancements to improve site-specificity of gene delivery. Here, we studied whether incorporation of magnetic nanoparticles (MNP) with different magnetic properties into ultrasound sensitive microbubbles may represent an efficient way to enable gene targeting in the vascular system after systemic application. Thus, we associated novel silicon oxide-coated magnetic nanoparticle containing microbubbles (SO-Mag MMB) with lentiviral particles carrying therapeutic genes and determined their physico-chemical as well as biological properties compared to MMB coated with polyethylenimine-coated magnetic nanoparticles (PEI-Mag MMB). While there were no differences between both MMB types concerning size and lentivirus binding, SO-Mag MMB exhibited superior characteristics regarding magnetic moment, magnetizability as well as transduction efficiency under static and flow conditions in vitro. Focal disruption of lentiviral SO-Mag MMB by ultrasound within isolated vessels exposed to an external magnetic field decisively improved localized VEGF expression in aortic endothelium ex vivo and enhanced the angiogenic response. Using the same system in vivo, we achieved a highly effective, site-specific lentiviral transgene expression in microvessels of the mouse dorsal skin after arterial injection. Thus, we established a novel lentiviral MMB technique, which has great potential towards site-directed vascular gene therapy

    Analysis of Trajectories for Targeting of Magnetic Nanoparticles in Blood Vessels

    Full text link
    The technique of magnetic drug targeting deals with binding drugs or genetic material to superparamagnetic nanoparticles and accumulating these complexes via an external magnetic field in a target region. For a successful approach, it is necessary to know the required magnetic setup as well as the physical properties of the complexes. With the help of computational methods, the complex accumulation and behavior can be predicted. We present a model for vascular targeting with a full three-dimensional analysis of the magnetic and fluidic forces and a subsequent evaluation of the resulting trajectories of the complexes. These trajectories were calculated with respect to the physiological boundary conditions, the magnetic properties of both the external field and the particles as well as the hydrodynamics of the fluid. We paid special regard to modeling input parameters like flow velocity as well as the distribution functions of the hydrodynamic size and magnetic moment of the nanoparticle complexes. We are able to estimate the amount of complexes, as well as the spatial distribution of those complexes. Additionally, we examine the development of the trapping rate for multiple passages of the complexes and compare the influence of several input parameters. Finally, we provide experimental data of an <i>ex vivo</i> flow-loop system which serves as a model for large vessel targeting. In this model, we achieve a deposition of lentivirus/magnetic nanoparticle complexes in a murine aorta and compare our simulation with the experimental results gained by a non-heme-iron assay

    Vascular Repair by Circumferential Cell Therapy Using Magnetic Nanoparticles and Tailored Magnets

    Full text link
    Cardiovascular disease is often caused by endothelial cell (EC) dysfunction and atherosclerotic plaque formation at predilection sites. Also surgical procedures of plaque removal cause irreversible damage to the EC layer, inducing impairment of vascular function and restenosis. In the current study we have examined a potentially curative approach by radially symmetric re-endothelialization of vessels after their mechanical denudation. For this purpose a combination of nanotechnology with gene and cell therapy was applied to site-specifically re-endothelialize and restore vascular function. We have used complexes of lentiviral vectors and magnetic nanoparticles (MNPs) to overexpress the vasoprotective gene endothelial nitric oxide synthase (eNOS) in ECs. The MNP-loaded and eNOS-overexpressing cells were magnetic, and by magnetic fields they could be positioned at the vascular wall in a radially symmetric fashion even under flow conditions. We demonstrate that the treated vessels displayed enhanced eNOS expression and activity. Moreover, isometric force measurements revealed that EC replacement with eNOS-overexpressing cells restored endothelial function after vascular injury in eNOS<sup>–/–</sup> mice <i>ex</i> and <i>in vivo</i>. Thus, the combination of MNP-based gene and cell therapy with custom-made magnetic fields enables circumferential re-endothelialization of vessels and improvement of vascular function
    corecore