44 research outputs found

    Seroprofiling of Antibodies Against Endemic Human Coronaviruses and Severe Acute Respiratory Syndrome Coronavirus 2 in a Human Immunodeficiency Virus Cohort in Lesotho: Correlates of Antibody Response and Seropositivity

    Full text link
    BACKGROUND: Serological data on endemic human coronaviruses (HCoVs) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in southern Africa are scarce. Here, we report on (1) endemic HCoV seasonality, (2) SARS-CoV-2 seroprevalence, and (3) correlates of SARS-CoV-2 seropositivity and strength of SARS-CoV-2 and endemic HCoV serological responses among adults living with human immunodeficiency virus (HIV). METHODS: Plasma samples were collected from February 2020 to July 2021 within an HIV cohort in Lesotho. We used the AntiBody CORonavirus Assay (ABCORA) multiplex immunoassay to measure antibody responses to endemic HCoV (OC43, HKU1, NL63, and 229E) and SARS-CoV-2 antigens. RESULTS: Results for 3173 samples from 1403 adults were included. Serological responses against endemic HCoVs increased over time and peaked in winter and spring. SARS-CoV-2 seropositivity reached >35% among samples collected in early 2021 and was associated with female sex, obesity, working outside the home, and recent tiredness or fever. Positive correlations were observed between the strength of response to endemic HCoVs and to SARS-CoV-2 and between older age or obesity and the immunoglobulin G response to SARS-CoV-2. CONCLUSIONS: These results add to our understanding of the impact of biological, clinical, and social/behavioral factors on serological responses to coronaviruses in southern Africa

    Seroprofiling of antibodies against endemic human coronaviruses and SARS-CoV-2 in an HIV cohort in Lesotho: correlates of antibody response and seropositivity.

    Get PDF
    BACKGROUND Serological data on endemic human coronaviruses (HCoVs) and SARS-CoV-2 in southern Africa are scarce. Here, we report on i) endemic HCoV seasonality, ii) SARS-CoV-2 seroprevalence, and iii) predictive factors for SARS-CoV-2 seropositivity and strength of SARS-CoV-2 and HCoV serological response during a 17-month period at the start of the COVID-19 pandemic among adults living with HIV. METHODS Plasma samples were collected from February 2020 to July 2021 within an outpatient HIV cohort in Lesotho. We used the ABCORA multiplex immunoassay to measure antibody responses to endemic HCoV (OC43, HKU1, NL63, and 229E) and SARS-CoV-2 antigens. RESULTS Results of 3'173 samples from 1'403 adults were included. Serological responses against endemic HCoVs increased over time and peaked in winter/spring. SARS-CoV-2 seropositivity reached >35% among samples collected in early 2021 and was associated with female sex (p = 0.004), obesity (p < 0.001), working outside the home (p = 0.02), and recent tiredness (p = 0.005) or fever (p = 0.007). Positive correlations were observed between the strength of response to endemic HCoVs and to SARS-CoV-2, and between older age or obesity and the IgG response to SARS-CoV-2. CONCLUSIONS These results add to our understanding of the impact of biological, clinical, and social/behavioural factors on serological responses to coronaviruses in southern Africa

    Postvaccination anti-S IgG levels predict anti-SARS-CoV-2 neutralising activity over 24 weeks in patients with RA

    Full text link
    OBJECTIVES To correlate immune responses following a two-dose regimen of mRNA anti-SARS-CoV-2 vaccines in patients with rheumatoid arthritis (RA) to the development of a potent neutralising antiviral activity. METHODS The RECOVER study was a prospective, monocentric study including patients with RA and healthy controls (HCs). Assessments were performed before, and 3, 6, 12 and 24 weeks, after the first vaccine dose, respectively, and included IgG, IgA and IgM responses (against receptor binding domain, S1, S2, N), IFN-γ ELISpots as well as neutralisation assays. RESULTS In patients with RA, IgG responses developed slower with lower peak titres compared with HC. Potent neutralising activity assessed by a SARS-CoV-2 pseudovirus neutralisation assay after 12 weeks was observed in all 21 HCs, and in 60.3% of 73 patients with RA. A significant correlation between peak anti-S IgG levels 2 weeks after the second vaccine dose and potent neutralising activity against SARS-CoV-2 was observed at weeks 12 and 24. The analysis of IgG, IgA and IgM isotype responses to different viral proteins demonstrated a delay in IgG but not in IgA and IgM responses. T cell responses were comparable in HC and patients with RA but declined earlier in patients with RA. CONCLUSION In patients with RA, vaccine-induced IgG antibody levels were diminished, while IgA and IgM responses persisted, indicating a delayed isotype switch. Anti-S IgG levels 2 weeks after the second vaccine dose correlate with the development of a potent neutralising activity after 12 and 24 weeks and may allow to identify patients who might benefit from additional vaccine doses or prophylactic regimen

    Antibody Response After Third Vaccination With mRNA-1273 or BNT162b2: Extension of a Randomized Controlled SARS-CoV-2 Noninferiority Vaccine Trial in Patients With Different Levels of Immunosuppression (COVERALL-2).

    Get PDF
    Extension of the COVERALL (COrona VaccinE tRiAL pLatform) randomized trial showed noninferiority in antibody response of the third dose of Moderna mRNA-1273 vaccine (95.3% [95% confidence interval {CI}, 91.9%-98.7%]) compared to Pfizer-BioNTech BNT162b2 vaccine (98.1% [95% CI, 95.9%-100.0%]) in individuals with different levels of immunosuppression (difference, -2.8% [95% CI, -6.8% to 1.3%])

    Antibody Response to SARS-CoV-2 Vaccination in Patients following Allogeneic Hematopoietic Cell Transplantation

    Full text link
    Vaccines against SARS-CoV-2 have been rapidly approved. Although pivotal studies were conducted in healthy volunteers, little information is available on the safety and efficacy of mRNA vaccines in immunocompromised patients, including recipients of allogeneic hematopoietic cell transplantation (allo-HCT). Here we used a novel assay to analyze patient- and transplantation-related factors and their influence on immune responses to SARS-CoV-2 vaccination over an extended period (up to 6 months) in a large and homogenous group of allo-HCT recipients at a single center in Switzerland. We examined longitudinal antibody responses to SARS-CoV-2 vaccination with BNT162b2 (BioNTech/Pfizer) and mRNA-1273 (Moderna) in 110 allo-HCT recipients and 86 healthy controls. Seroprofiling recording IgG, IgA, and IgM reactivity against SARS-CoV-2 antigens (receptor-binding domain, spike glycoprotein subunits S1 and S2, and nucleocapsid protein) was performed before vaccination, before the second dose, and at 1, 3, and 6 months after the second dose. Patients were stratified to 3 groups: 3 to 6 months post-allo-HCT, 6 to 12 months post-allo-HCT, and >12 months post-allo-HCT. Patients in the 3 to 6 months and 6 to 12 months post-allo-HCT groups developed significantly lower antibody titers after vaccination compared with patients in the >12 months post-allo-HCT group and healthy controls (P 65 years (P = .030), those receiving immunosuppression for prevention or treatment of graft-versus-host disease (GVHD) (P = .033), and patients with relapsed disease (P = .014) displayed low humoral immune responses to the vaccine. In contrast, the intensity of the conditioning regimen, underlying disease (myeloid/lymphoid/other), and presence of chronic GVHD had no impact on antibody levels. Antibody titers achieved the highest levels at 1 month after the second dose of the vaccine but waned substantially in all transplantation groups and healthy controls over time. This analysis of long-term vaccine antibody response is of critical importance to allo-HCT recipients and transplant physicians to guide treatment decisions regarding revaccination and social behavior during the SARS-CoV-2 pandemic. Keywords: Allogeneic hematopoietic cell transplantation; SARS-CoV-2; Vaccinatio

    Antibody response to a third SARS-CoV-2 vaccine dose in recipients of an allogeneic haematopoietic cell transplantation

    Full text link
    Allogeneic haematopoietic cell transplantation (allo-HCT) recipients show impaired antibody (Ab) response to a standard two-dose vaccination against severe acute respiratory syndrome coronavirus-2 and currently a third dose is recommended as part of the primary vaccination regimen. By assessing Ab titres 1 month after a third mRNA vaccine dose in 74 allo-HCT recipients we show sufficient neutralisation activity in 77% of the patients. Discontinuation of immunosuppression before the third vaccine led to serological responses in 50% of low responders to two vaccinations. Identifying factors that might contribute to better vaccine responses in allo-HCT recipients is critical to optimise current vaccination strategies. Keywords: allogeneic haematopoietic cell transplantation; severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2); vaccine respons

    Antibody Response After the Third SARS-CoV-2 Vaccine in Solid Organ Transplant Recipients and People Living With HIV (COVERALL-2).

    Get PDF
    BACKGROUND After basic immunization with 2 mRNA SARS-CoV-2 vaccine doses, only a small proportion of patients who are severely immunocompromised generate a sufficient antibody response. Hence, we assessed the additional benefit of a third SARS-CoV-2 vaccine in patients with different levels of immunosuppression. METHODS In this observational extension of the COVERALL trial (Corona Vaccine Trial Platform), we recruited patients from the Swiss HIV Cohort Study and the Swiss Transplant Cohort Study (ie, lung and kidney transplant recipients). We collected blood samples before and 8 weeks after the third SARS-CoV-2 vaccination with either mRNA-1273 (Moderna) or BNT162b2 (Pfizer-BioNTech). The primary outcome was the proportion of participants showing an antibody response (Elecsys Anti-SARS-CoV-2 S test; threshold ≥100 U/mL) 8 weeks after the third SARS-CoV-2 vaccination. We also compared the proportion of patients who reached the primary outcome from basic immunization (the first and second vaccines) to the third vaccination. RESULTS Nearly all participants (97.2% [95% CI, 95.9%-98.6%], 564/580) had an antibody response. This response was comparable between mRNA-1273 (96.1% [95% CI, 93.7%-98.6%], 245/255) and BNT162b2 (98.2% [95% CI, 96.7%-99.6%], 319/325). Stratification by cohort showed that 99.8% (502/503) of people living with HIV and 80.5% (62/77) of recipients of solid organ transplants achieved the primary endpoint. The proportion of patients with an antibody response in solid organ transplant recipients improved from the second vaccination (22.7%, 15/66) to the third (80.5%, 62/77). CONCLUSIONS People living with HIV had a high antibody response. The third vaccine increased the proportion of solid organ transplant recipients with an antibody response. Clinical Trials Registration. NCT04805125 (ClinicalTrials.gov)

    Antibody Response After Third Vaccination With mRNA-1273 or BNT162b2: Extension of a Randomized Controlled SARS-CoV-2 Noninferiority Vaccine Trial in Patients With Different Levels of Immunosuppression (COVERALL-2)

    Full text link
    Extension of the COVERALL (COrona VaccinE tRiAL pLatform) randomized trial showed noninferiority in antibody response of the third dose of Moderna mRNA-1273 vaccine (95.3% [95% confidence interval {CI}, 91.9%-98.7%]) compared to Pfizer-BioNTech BNT162b2 vaccine (98.1% [95% CI, 95.9%-100.0%]) in individuals with different levels of immunosuppression (difference, -2.8% [95% CI, -6.8% to 1.3%])

    Antibodies from convalescent plasma promote SARS-CoV-2 clearance in individuals with and without endogenous antibody response

    Full text link
    BACKGROUNDNeutralizing antibodies are considered a key correlate of protection by current SARS-CoV-2 vaccines. The manner in which human infections respond to therapeutic SARS-CoV-2 antibodies, including convalescent plasma therapy, remains to be fully elucidated. METHODSWe conducted a proof-of-principle study of convalescent plasma therapy based on a phase I trial in 30 hospitalized COVID-19 patients with a median interval between onset of symptoms and first transfusion of 9 days (IQR, 7-11.8 days). Comprehensive longitudinal monitoring of the virological, serological, and disease status of recipients allowed deciphering of parameters on which plasma therapy efficacy depends. RESULTSIn this trial, convalescent plasma therapy was safe as evidenced by the absence of transfusion-related adverse events and low mortality (3.3%). Treatment with highly neutralizing plasma was significantly associated with faster virus clearance, as demonstrated by Kaplan-Meier analysis (P = 0.034) and confirmed in a parametric survival model including viral load and comorbidity (adjusted hazard ratio, 3.0; 95% CI, 1.1-8.1; P = 0.026). The onset of endogenous neutralization affected viral clearance, but even after adjustment for their pretransfusion endogenous neutralization status, recipients benefitted from plasma therapy with high neutralizing antibodies (hazard ratio, 3.5; 95% CI, 1.1-11; P = 0.034). CONCLUSIONOur data demonstrate a clear impact of exogenous antibody therapy on the rapid clearance of viremia before and after onset of the endogenous neutralizing response, and point beyond antibody-based interventions to critical laboratory parameters for improved evaluation of current and future SARS-CoV-2 therapies. TRIAL REGISTRATIONClinicalTrials.gov NCT04869072. FUNDINGThis study was funded via an Innovation Pool project by the University Hospital Zurich; the Swiss Red Cross Glückskette Corona Funding; Pandemiefonds of the UZH Foundation; and the Clinical Research Priority Program "Comprehensive Genomic Pathogen Detection" of the University of Zurich
    corecore