2 research outputs found
Simulation of an Ultrafast Charging Station Operating in Steady State
This report presents the analysis, study, and simulation of an ultrafast charging station (UFCS) for electric vehicles (EVs) operating in steady state. The electrical architecture of the charging station uses an ac bus plus two dc buses and it is supported by a storage system based on batteries and super-capacitors. The power demand of the EVs is established taking into account the electric characteristics of their batteries and the availability of the station charging points. The analysis introduces a supervisory control based on a state machine description for different operating modes, which eventually facilitates fault detection in the electrical architecture. In addition, the study proposes different methods to handle the required energy for the charging demand and a procedure for the correct sizing of both the energy storage system and the input transformer. In laboratory experiments in a reduced-scale storage system, a SCADA supervision with CAN communication has proved successful in gathering data corresponding to modes of charge and discharge in batteries and super-capacitors, and subsequently displaying them on a computer screen
Hierarchical Control of Power Distribution in the Hybrid Energy Storage System of an Ultrafast Charging Station for Electric Vehicles
This paper presents a two-level hierarchical control method for the power distribution between the hybrid energy storage system (HESS) and the main dc bus of a microgrid for ultrafast charging of electric vehicles (EVs). The HESS is composed of a supercapacitor and a battery and is an essential part to fulfill the charging demand of EVs in a microgrid made up of a 220 VRMS ac bus, two dc buses of 600 V and 1500 V, respectively, and four charging points. A state machine defines the four operating modes of the HESS and establishes the conditions for the corresponding transitions among them, namely, charging the battery and the supercapacitor from the bus, injecting the current from the HESS into the 1500 V dc bus to ensure the power balance in the microgrid, regulating the bus voltage, and establishing the disconnection mode. The primary level of the control system regulates the current and voltage of the battery, supercapacitor, and dc bus, while the secondary level establishes the operating mode of the HESS and provides the appropriate references to the primary level. In the primary level, sliding mode control (SMC) is used in both the battery and supercapacitor in the inner loop of a cascade control that implements the standard constant current–constant voltage (CC-CV) charging protocol. In the same level, linear control is applied in the CV phase of the protocol and for bus voltage regulation or the current injection into the bus. PSIM simulations of the operating modes and their corresponding transitions verify the theoretical predictions