6 research outputs found

    Impact of the Polymer Backbone Structure on the Separation Properties of New Stationary Phases Based on Tricyclononenes

    No full text
    The main purpose of this paper is to compare the chromatographic properties of capillary columns prepared with polymers with different backbone structures and to demonstrate the possibility of polymer differentiation via inverse gas chromatography. With the use of addition and metathesis types of polymerization of tricyclononenes, two new stationary phases were prepared. The metathesis polymer contained double bonds in the polymeric backbone while the backbone of the addition polymer was fully saturated and relatively mobile. A comparison of the separation and adsorption properties of new phases with conventional gas chromatography (GC) stationary phases clearly indicated their non-polar characteristics. However, the difference in the polymer structure appeared to have very little effect on the stationary phase separation properties, so other parameters were used for polymer characterization. The thermodynamic parameters of the sorption of alkanes and aromatic compounds in both polymeric stationary phases were also very similar; however, the entropy of sorption for hydrocarbons with seven or more carbon atoms was different for the two polymers. An evaluation of the specific surface energy of the stationary phases also allowed us to discriminate the two stationary phases

    Organosilica-Modified Multiblock Copolymers for Membrane Gas Separation

    No full text
    Organosubstituted silica derivatives were synthesized and investigated as modifiers of block copolymers based on macroinitiator and 2,4-toluene diisocyanate. A peculiarity of the modified block copolymers is the existence in their structure of coplanar rigid polyisocyanate blocks of acetal nature (O-polyisocyanates). Organosubstituted silica derivatives have a non-additive effect on high-temperature relaxation and α-transitions of modified polymers and exhibit the ability to influence the supramolecular structure of block copolymers. The use of the developed modifiers leads to a change in the gas transport properties of block copolymers. The increase of the permeability coefficients is due to the increase of the diffusion coefficients. At the same time, the gas solubility coefficients do not change. An increase in the ideal selectivity for a number of gas pairs is observed. An increase in the selectivity for the CO2/N2 gas pair (from 25 to 39) by 1.5 times demonstrates the promising use of this material for flue gases separation

    Features of the Gas-Permeable Crystalline Phase of Poly-2,6-dimethylphenylene Oxide

    No full text
    Poly-2,6-dimethylphenylene oxide (PPO) film samples with varying degrees of crystallinity (from 0 to 69%) were obtained by means of different techniques. The films were studied by various physicochemical methods (Fourier-transform infrared spectroscopy, positron annihilation lifetime spectroscopy, X-ray diffraction, and 1H nuclear magnetic resonance relaxation). Solubility coefficients of gases in the PPO samples were measured via sorption isotherms of gases by volumetric technique with chromatographic detection. The apparent activation energy of permeation and the activation energy of diffusion of all gases were estimated based on temperature dependences of gas permeability and diffusivity for amorphous and semi-crystalline PPO in the range of 20–50 °C. The peculiarities of free volume, density, and thermal properties of gas transport confirm the nanoporosity of the gas-permeable crystalline phase of PPO. So, the PPO can be included in the group of organic molecular sieves
    corecore