17 research outputs found

    Current State of Knee Arthroplasty in Russia: Analysis of 36,350 Сases from the Register of the Vreden National Medical Research Center of Traumatology and Orthopedics

    Get PDF
    Background.Nowadays the knee arthroplasty register of the Vreden National Medical Research Center of Traumatology and Orthopedics (hereinafter referred to as the Vreden Center) contains clinical and statistical data on more than 39,000 primary and revision knee replacements, that mimics current state of this kind of surgery in Russia. Aimofthestudy to analyze the last decade trends in primary knee arthroplasty in largest Russian arthroplasty center. Methods.Data were obtained from the register of the Vreden Center for the period from 2011 to 2022. Information on knee arthroplasty included epidemiologic and numerous peri-operative data including type of surgery and implant, degree of constrain, primary patella resurfacing etc. Resultsanddiscussion.From 2011 to 2022, 36,350 (92.3%) primary arthroplasties performed at the Vreden Center. The number of interventions increased more than twice: from 1,678 in 2011 to 3,924 in 2022. Similar trends observed in Australia and Sweden, where the number of knee arthroplasties increased by 8.2% and 8% in 2021 compared to 2020, respectively. The frequency of primary patellar resurfacing at the Vreden Center was 2.2% over the entire period of observation. On the contrary, the rate of patella replacement increased from 41% in 2005 to 76.1% in 2021 in Australia and from 24.4% in 2015 to 31.9% in 2020 in Switzerland. The partial knee arthroplasty showed enormous growth more than 14 times: from 0.3% in 2011 to 4.3% in 2022 at the Vreden Center. Worldwide unicompartmental knee replacement is still less popular than total and its number widely varies: 4.2% in the USA, 6.9% in Australia, 9.2% in Canada, 11.9% in Norway, 12.8% in Sweden, and 18.4% in Switzerland. Posterior cruciate ligament (PCL) retaining total knee arthroplasties (TKA) prevailed at the Vreden Center: 68.3%, while in other countries it utilize even more widely: 70.5% in Norway, 75% in New Zealand and 93.5% in Sweden. The total length of hospital stay (LOS) decreased dramatically from 19.6 in 2011 to 8.6 in 2022 at the Vreden Center. Nevertheless, there are still opportunities to improve it: by the way in Canada the average LOS for TKA is 2.3 and the USA 0.8 and 1.7 for partial and total arthroplasty, respectively. Conclusion.The main current trends of knee arthroplasty in Russia are the following: increase the number of surgeries, reduced LOS, TKA without patella resurfacing and with PCL retention, finally the growth of partial knee arthroplasties

    Epithelial-Immune Cell Crosstalk Determines the Activation of Immune Cells In Vitro by the Human Cathelicidin LL-37 at Low Physiological Concentrations

    No full text
    The only human cathelicidin, LL-37, is a host defense antimicrobial peptide with antimicrobial activities against protozoans, fungi, Gram(+) and Gram(−) bacteria, and enveloped viruses. It has been shown in experiments in vitro that LL-37 is able to induce the production of various inflammatory and anti-inflammatory cytokines and chemokines by different human cell types. However, it remains an open question whether such cytokine induction is physiologically relevant, as LL-37 exhibited its immunomodulatory properties at concentrations that are much higher (>20 μg/mL) than those observed in non-inflamed tissues (1–5 μg/mL). In the current study, we assessed the permeability of LL-37 across the Caco-2 polarized monolayer and showed that this peptide could pass through the Caco-2 monolayer with low efficiency, which predetermined its low absorption in the gut. We showed that LL-37 at low physiological concentrations (<5 μg/mL) was not able to directly activate monocytes. However, in the presence of polarized epithelial monolayers, LL-37 is able to activate monocytes through the MAPK/ERK signaling pathway and induce the production of cytokines, as assessed by a multiplex assay at the protein level. We have demonstrated that LL-37 is able to fulfill its immunomodulatory action in vivo in non-inflamed tissues at low physiological concentrations. In the present work, we revealed a key role of epithelial-immune cell crosstalk in the implementation of immunomodulatory functions of the human cathelicidin LL-37, which might shed light on its physiological action in vivo

    Novel Antimicrobial Peptides from the Arctic Polychaeta <i>Nicomache minor</i> Provide New Molecular Insight into Biological Role of the BRICHOS Domain

    No full text
    Endogenous antimicrobial peptides (AMPs) are among the earliest molecular factors in the evolution of animal innate immunity. In this study, novel AMPs named nicomicins were identified in the small marine polychaeta Nicomache minor in the Maldanidae family. Full-length mRNA sequences encoded 239-residue prepropeptides consisting of a putative signal sequence region, the BRICHOS domain within an acidic proregion, and 33-residue mature cationic peptides. Nicomicin-1 was expressed in the bacterial system, and its spatial structure was analyzed by circular dichroism and nuclear magnetic resonance spectroscopy. Nicomicins are unique among polychaeta AMPs scaffolds, combining an amphipathic N-terminal &#945;-helix and C-terminal extended part with a six-residue loop stabilized by a disulfide bridge. This structural arrangement resembles the Rana-box motif observed in the &#945;-helical host-defense peptides isolated from frog skin. Nicomicin-1 exhibited strong in vitro antimicrobial activity against Gram-positive bacteria at submicromolar concentrations. The main mechanism of nicomicin-1 action is based on membrane damage but not on the inhibition of bacterial translation. The peptide possessed cytotoxicity against cancer and normal adherent cells as well as toward human erythrocytes

    Conformational Dynamics and Stability of Bilayers Formed by Mycolic Acids from the Mycobacterium tuberculosis Outer Membrane

    No full text
    Bilayers of mycolic acids (MAs) form the outer membrane of Mycobacterium tuberculosis that has high strength and extremely low permeability for external molecules (including antibiotics). For the first time, we were able to study them using the all-atom long-term molecular dynamic simulations (from 300 ns up to 1.2 &mu;s) in order to investigate the conformational changes and most favorable structures of the mycobacterial membranes. The structure and properties of the membranes are crucially dependent on the initial packing of the &alpha;-mycolic acid (AMA) molecules, as well as on the presence of the secondary membrane components, keto- and methoxy mycolic acids (KMAs and MMAs). In the case of AMA-based membranes, the most labile conformation is W while other types of conformations (sU as well as sZ, eU, and eZ) are much more stable. In the multicomponent membranes, the presence of the KMA and MMA components (in the W conformation) additionally stabilizes both the W and eU conformations of AMA. The membrane in which AMA prevails in the eU conformation is much thicker and, at the same time, much denser. Such a packing of the MA molecules promotes the formation of a significantly stronger outer mycobacterial membrane that should be much more resistant to the threatening external factors

    Conformational Dynamics and Stability of Bilayers Formed by Mycolic Acids from the <i>Mycobacterium tuberculosis</i> Outer Membrane

    No full text
    Bilayers of mycolic acids (MAs) form the outer membrane of Mycobacterium tuberculosis that has high strength and extremely low permeability for external molecules (including antibiotics). For the first time, we were able to study them using the all-atom long-term molecular dynamic simulations (from 300 ns up to 1.2 μs) in order to investigate the conformational changes and most favorable structures of the mycobacterial membranes. The structure and properties of the membranes are crucially dependent on the initial packing of the α-mycolic acid (AMA) molecules, as well as on the presence of the secondary membrane components, keto- and methoxy mycolic acids (KMAs and MMAs). In the case of AMA-based membranes, the most labile conformation is W while other types of conformations (sU as well as sZ, eU, and eZ) are much more stable. In the multicomponent membranes, the presence of the KMA and MMA components (in the W conformation) additionally stabilizes both the W and eU conformations of AMA. The membrane in which AMA prevails in the eU conformation is much thicker and, at the same time, much denser. Such a packing of the MA molecules promotes the formation of a significantly stronger outer mycobacterial membrane that should be much more resistant to the threatening external factors

    Antigen-Specific IFN-γ Responses Correlate with the Activity of M. tuberculosis Infection but Are Not Associated with the Severity of Tuberculosis Disease

    No full text
    IFN-γ is a key cytokine in antituberculosis (TB) defense. However, how the levels of its secretion affect M. tuberculosis (Mtb) infection is not clear. We have analyzed associations between IFN-γ responses measured in QuantiFERON®-TB Gold In-tube (QFT) assay, TB disease severity, and Mtb infection activity. TB severity was evaluated based on the results of radiological, microbiological, and clinical examinations. Antigen-driven IFN-γ secretion did not correlate with TB severity. Mitogen-induced IFN-γ secretion correlated inversely with the form of pulmonary pathology and the area of affected pulmonary tissue; the levels of spontaneous IFN-γ secretion correlated with patients’ age (r = 0.395, p = 0.001). Mtb infection activity was evaluated based on radiological data of lung tissue infiltration, destruction, dissemination or calcification, and condensation. The rate of positive QFT results and the levels of antigen-driven IFN-γ secretion increased in a row: patients with residual TB lesions < patients with low TB activity < patients with high TB activity. Thus, antigen-driven IFN-γ secretion and QFT results did not associate with TB severity but associated with the infection activity. The results suggest that quantitative parameters of IFN-γ secretion play a minor role in determining the course of TB disease but mirror the activity of the infectious process

    Design of Protegrin-1 Analogs with Improved Antibacterial Selectivity

    No full text
    Protegrin-1 (PG-1) is a cationic β-hairpin pore-forming antimicrobial peptide having a membranolytic mechanism of action. It possesses in vitro a potent antimicrobial activity against a panel of clinically relevant MDR ESKAPE pathogens. However, its extremely high hemolytic activity and cytotoxicity toward mammalian cells prevent the further development of the protegrin-based antibiotic for systemic administration. In this study, we rationally modulated the PG-1 charge and hydrophobicity by substituting selected residues in the central β-sheet region of PG-1 to design its analogs, which retain a high antimicrobial activity but have a reduced toxicity toward mammalian cells. In this work, eight PG-1 analogs with single amino acid substitutions and five analogs with double substitutions were obtained. These analogs were produced as thioredoxin fusions in Escherichia coli. It was shown that a significant reduction in hemolytic activity without any loss of antimicrobial activity could be achieved by a single amino acid substitution, V16R in the C-terminal β-strand, which is responsible for the PG-1 oligomerization. As the result, a selective analog with a ≥30-fold improved therapeutic index was obtained. FTIR spectroscopy analysis of analog, [V16R], revealed that the peptide is unable to form oligomeric structures in a membrane-mimicking environment, in contrast to wild-type PG-1. Analog [V16R] showed a reasonable efficacy in septicemia infection mice model as a systemic antibiotic and could be considered as a promising lead for further drug design
    corecore