10 research outputs found

    Kinetic and continuum modeling of high-temperature oxygen and nitrogen binary mixtures

    Get PDF
    The present paper provides a comprehensive comparative analysis of thermochemistry models of various fidelity levels developed in leading research groups around the world. Fully kinetic, hybrid kinetic-continuum, and fully continuum approaches are applied to analyze parameters of hypersonic flows starting from the revision of single-temperature rate constants up to the application in 1-D postshock conditions. Comparison of state-specific and two-temperature approaches shows there are very significant and often qualitative differences in the time-dependent nonequilibrium reaction rates and their ratio to the corresponding single-temperature rates. A major impact of the vibration-dissociation coupling on the temporal relaxation of gas properties is shown. For instance, the legacy Park's model has a strongly nonlinear behavior of nonequilibrium reaction rate with vibrational temperature, while a nearly linear shape exists for all state-specific approaches. Analysis of vibrational level populations in the nonequilibrium region shows a profound impact of the numerical approach and the model on the population ratios, and thus vibrational temperatures inferred from such ratios. The difference in the ultraviolet absorption coefficients, calculated by a temperature-based spectral code using vibrational populations from state-specific and kinetic approaches, is found to exceed an order of magnitude

    Kinetic and continuum modeling of high-temperature air relaxation

    Get PDF
    Fully kinetic, vibrationally kinetic, and continuum solvers with varying model fidelity are used in this work to model the high-temperature relaxation of air in 7230 and 15,000 K adiabatic heat baths and a 6 km/s hypersonic flow over a cylinder. The results show significant impact of uncertainties in vibrational relaxation times and reaction rate constants on thermal and chemical relaxation, in particular, on gas temperature and species mole fractions. Most notably, these uncertainties need to be reduced for collisions that include nitric oxide. Order-of-magnitude differences in the nitric oxide dissociation and recombination rates have a large impact on the peak NO mole fraction immediately behind the shock and surface-distributed heat flux, respectively. High-fidelity kinetic and continuum approaches are found to have different reaction channels having the largest effect on species mole fractions and gas temperature: N-2+O exchange and O-2+O dissociation in the former, and NO+O and O-2+N-2 dissociation in the latter

    Geo-Located Tweets. Enhancing Mobility Maps and Capturing Cross-Border Movement

    No full text
    Capturing human movement patterns across political borders is difficult and this difficulty highlights the need to investigate alternative data streams. With the advent of smart phones and the ability to attach accurate coordinates to Twitter messages, users leave a geographic digital footprint of their movement when posting tweets. In this study we analyzed 10 months of geo-located tweets for Kenya and were able to capture movement of people at different temporal (daily to periodic) and spatial (local, national to international) scales. We were also able to capture both long and short distances travelled, highlighting regional connections and cross-border movement between Kenya and the surrounding countries. The findings from this study has broad implications for studying movement patterns and mapping inter/intra-region movement dynamics
    corecore