13 research outputs found

    4-[(4-Meth­oxy­benzyl­idene)amino]­benzene­sulfonamide

    Get PDF
    The title Schiff base compound, C14H14N2O3S, is non-planar, with a dihedral angle of 24.16 (7)° between the benzene rings. In the crystal, N—H⋯O and N—H⋯N hydrogen bonds link the mol­ecules into a layer parallel to (011). Intra- and inter­layer C—H⋯O inter­actions and π–π inter­actions [centroid–centroid distances = 3.8900 (9) and 3.9355 (8) Å] are also present

    3-Methyl-1-phenyl-4-[(phen­yl)(2-phenyl­hydrazin-1-yl)meth­ylidene]-1H-pyrazol-5(4H)-one

    Get PDF
    The title compound, C23H20N4O, is a heterocyclic phenyl­hydrazone Schiff base with a pyrazole moiety. In the crystal, a variety of inter­actions occur, including N—H⋯π and π–π stacking between the phenyl ring of the phenyl­hydrazinyl group and its symmetry-generated equivalent [centroid–centroid distance = 3.6512 (7) Å]

    Metal Complexes of New Bioactive Pyrazolone Phenylhydrazones; Crystal Structure of 4-Acetyl-3-methyl-1-phenyl-2-pyrazoline-5-one phenylhydrazone Ampp-Ph

    No full text
    The condensation reaction of phenylhydrazine and dinitrophenylhydrazine with 4-acetyl and 4-benzoyl pyrazolone precipitated air-stable acetyldinitrophenylhydrazone Ampp-Dh, benzoylphenylhydrazone Bmpp-Ph and benzoyldinitrophenylhydrazone Bmpp-Dh in their keto imine form; a study inspired by the burning interest for the development of new bioactive materials with novel properties that may become alternative therapeutic agents. Elemental analysis, FTIR, 1H, and 13C NMR, and mass spectroscopy have been used to justify their proposed chemical structures, which were in agreement with the single crystal structure of Bmpp-Dh earlier reported according to X-ray crystallography. The single crystal structure of 4-acetyl-3-methyl-1-phenyl--pyrazoline-5-one phenylhydrazone Ampp-Ph, which crystallizes in a triclinic crystal system with a P-1 (No. 2) space group is presented. Octahedral Mn(II), Ni(II), Co(II), and Cu(II) complexes of these respective ligands with two molecules each of the bidentate Schiff base, coordinating to the metal ion through the azomethine nitrogen C=N and the keto oxygen C=O, which were afforded by the reaction of aqueous solutions of the corresponding metal salts with the ligands are also reported. Their identity and proposed structures were according to elemental analysis, FTIR spectroscopy, UV-VIS spectrophotometry (electronic spectra) and Bohr magnetic moments, as well as thermogravimetric analysis (TGA) results. A look at the antibacterial and antioxidant activities of synthesized compounds using the methods of the disc diffusion against some selected bacterial isolates and 1,1-diphenyl-2-picryl-hydrazil (DPPH) respectively, showed biological activities in relation to employed standard medicinal drugs

    4-{[2-(2,4-Dinitrophenyl)hydrazinylidene](phenyl)methyl}-5-methyl-2-phenyl-1H-pyrazol-3(2H)-one ethanol monosolvate

    Get PDF
    In the title compound, C23H18N6O5·C2H6O, all three benzene rings lie in an approximate plane [maximum deviation = 0.2688 (16) Å] that makes an angle of 53.56 (3)° with the plane of the pyrazolone ring. Intramolecular N—H...O hydrogen bonds occur. In the crystal, the ethanol solvent molecule links adjacent molecules through N—H...O—H...O hydrogen bonds, leading to an infinite chain along the c-axis direction. The ethyl group of the ethanol solvent molecule is disordered over two set of sites in a 0.762 (5):0.238 (5) ratio

    Terpene constituents of the aerial parts, phenolic content, antibacterial potential, free radical scavenging and antioxidant activity of Callistemon citrinus (Curtis) Skeels (Myrtaceae) from Eastern Cape Province of South Africa

    No full text
    Abstract Background Volatile oil from aromatic plants has been used by ancient Egyptians in embalming for the inhibition of bacterial growth and prevention of decay, Callistemon citrinus is used in traditional therapies for the treatment of bronchitis, cough, inflammation and as an antimicrobial herbs. This study examines the essential constituents of the volatile oils obtained from the aerial parts of the plant as well as its antioxidant activity, free radical scavenging, phenolic content and the antibacterial potential of the oils. Methods A portion of 500 g, 250 g and 150 g of the leaves, flowers and stems of this plant respectively were subjected to hydro-distillation process for three hours. The oils collected from the various plant parts were immediately subjected to GC-MS analysis. The overall phenolic content of the leaves oil, radical scavenging, antibacterial action and antioxidant activities of the essential oils of both the leaves and flowers of Callistemon citrinus were determined using standard methods, with free radical DPPH and ABTS as a reference antioxidant. Results Analyses of the three oils revealed a total of twenty-six components for the leaves oil representing 96.84% of the total oil composition, forty-one components for the flowers oil accounting for 98.92% of the whole composition and ten components for the stem oil amounting to 99.98% of the entire oil constituents. The dominant compounds in the leaves oil were eucalyptol (48.98%) and α-terpineol (8.01%), while α-eudesmol (12.93%), caryophyllene (11.89%), (−)-bornyl-acetate (10.02%) and eucalyptol (8.11%) were the main constituents of the flowers oil. In the same vein, the leading constituents in the stems oil were eucalyptol (56.00%) and α-pinene (31.03%). The antioxidant capacities of both the leaves and flowers oils of the plant were evaluated and their IC50 were (1.49 and 1.13) for DPPH and (0.14 and 0.03) for ABTS assay respectively. The antibacterial activities of the oils from the (leaves and flowers) were also examined and were found to have wide range of activities against the bacterial strains used in this study. Conclusion Observations drawn from this experiment shows clearly that the leaves and flowers of Callistemon citrinus possess phenolic compounds and cyclic ether of several pharmacological behaviors

    Synthesis and Characterization of Bioactive Acylpyrazolone Sulfanilamides and Their Transition Metal Complexes: Single Crystal Structure of 4-Benzoyl-3-methyl-1-phenyl-2-pyrazolin-5-one Sulfanilamide

    Get PDF
    Two Schiff base ligands Ampp-Sn 1 and Bmpp-Sn 2, afforded by a condensation reaction between sulfanilamide and the respective acylpyrazolone carbonyl precursors, their Mn(II), Co(II), Ni(II), and Cu(II) complexes prepared by the reaction of ligands and corresponding metal salts in aqueous solutions, were synthesized and then characterized by both analytical and spectroscopic methods, in a view to developing new improved bioactive materials with novel properties. On the basis of elemental analysis, spectroscopic and TGA results, transition metal complexes, with octahedral geometry having two molecules of the bidentate keto-imine ligand each, have been proposed. The single crystal structure of Bmpp-Sn according to X-ray crystallography showed a keto-imine tautomer type of Schiff base, having three intramolecular bonds, one short N2⋯H2⋯O3 hydrogen bond of 1.90 Å and two long C13⋯H13⋯O2 and C32⋯H32⋯O3 hydrogen bonds of 2.48 Å. A moderate to low biological activities have been exhibited by synthesized compounds when compared with standard antimicrobial agents on screening the synthesized compounds against Staphylococcus aureus, Bacillus pumilus, Proteus vulgaris, and Aeromonas hydrophila for antibacterial activity and against free radical 1, 1-diphenyl-2-picryl-hydrazyl (DPPH) for antioxidant activity

    Synthesis, characterization, antimalarial, antitrypanocidal and antimicrobial properties of gold nanoparticle

    No full text
    In this study, we report on the biosynthesis of gold nanoparticles (AuNPs) by using Callistemon citrinus (C. citrinus) seed extract as both reducing and capping agent as well as its characterization. Likewise, the in vitro antiparasitic activities of both biosynthesized gold nanoparticles and crude seed extract of the plant were evaluated. The formation of biosynthesized AuNPs was confirmed by a color change immediately when the seed extract was added to the gold chloride (III) solution. Characterization of the AuNPs was done using analytical tools like ultraviolet–visible spectroscopy, X–ray diffraction, scanning electron microscopy (SEM), energy dispersive X–ray (EDX), transmission electron microscopy (TEM) and Fourier transformed infra–red (FTIR). FTIR showed an absorption peak at 230 nm consistent with the absorption band for gold nanoparticles, the morphology and composition of AuNPs was ascertained by SEM and EDX micrographs; uneven spherical-shaped nanoparticles was established by SEM analysis, and an average particle size of about 37 nm was confirmed by the TEM analysis. The crude seed extracts exhibited antitrypanosoma activities with an IC50 of 11.06 µg/mL. Both the crude seed extract and AuNPs were inactive against plasmodial parasite, while the antibacterial assay showed that AuNPs is potent against gram positive and gram negative bacterial strains

    Substituted 4-Acyl-5-methyl-2-phenyl-pyrazol-3-one-phenylhydrazones with Antioxidant Properties: X-Ray Crystal and Spectroscopic Studies

    No full text
    Phenylhydrazine was reacted with synthesized acylpyrazolone derivatives 4-ethyl-5-methyl-2-phenyl-pyrazol-3-one and 4-propyl-5-methyl-2-phenyl-pyrazol-3-one, to obtain two new azomethine phenylhydrazones, a study in continuation of our probe into the effects of acyl group substitutions on the physicochemical and free radical scavenging properties of acylpyrazolone Schiff bases. The keto imine tautomers of 4-ethyl-5-methyl-2-phenyl-pyrazol-3-one-phenylhydrazone (Empp-Ph) and 4-propyl-5-methyl-2-phenyl-pyrazol-3-one-phenylhydrazone (Prmpp-Ph) according to single X-ray crystallography data which precipitated in good yield are reported. Furthermore they have been characterized by elemental analysis, FTIR, 13C and 1H NMR, and mass-spectroscopy techniques. Both phenylhydrazone Schiff bases crystallize in a triclinic crystal system, each with a space group of P-1 (number 2) having short intramolecular N3—H3…O1 hydrogen interaction between the first hydrazine hydrogen H3 and the pyrazolone oxygen O1. The antioxidant free radical scavenging activities of titled compounds against 2,2-diphenyl-1-picrylhydrazyl (DPPH) showed a positive response almost as good as that of vitamin c under the same conditions, with the propyl substituted 4-propyl-5-methyl-2-phenyl-pyrazol-3-one-phenylhydrazone (Prmpp-Ph) having a stronger activity (calculated IC50 value of 175.66 μg/ml)
    corecore