11 research outputs found

    Development of a new plasma technology for producing pure white corundum

    Get PDF
    The paper presents the results of mining and primary approbation of plasma method for producing pure white corundum. Upgrading ways of pure corundum production is an important task for industry as part of reducing the energy consumption and environmental contamination. The purposes of the research at this stage are as follows: the selection of raw materials, formative evaluation for characteristics of the technology, conducting an experiment on melting and assessment of the sample. The corundum melting is conducted in the reactor using high-voltage plasmatron. Mixture of argon and 25–30 percent of nitrogen is used as the working fluid. The authors suggest using a four-layered protection of a melting reactor in order to ensure both thermal insulation properties and strength characteristics. This is especially relevant under temperature difference of the order of 2000 K and elimination of defective crystallization of the melt from the walls of the reactor. As a result of an experiment on melting alumina marked G-00 using high-voltage air powered plasmatron, the sample with alumina oxide in the amount of 99.79 percent and with absolute hardness equal to 500 was obtained. Further experiments make it possible to determine the prospects of using the proposed technology to obtain samples with an increased content of aluminum oxide. The paper discusses the application of the described technology for industrial production of pure corundum single crystals. The technology will make it possible to obtain samples to be used as abrasives for optical systems and for the production of sapphire glasses and scalpels

    Kinetic theory of instability in the interaction of an electron beam and plasma with an arbitrary anisotropic electron velocity distribution function

    No full text
    Based on the kinetic approach, this work investigates the stability of the system consisting of a fast electron beam and a dense plasma at an arbitrary (anisotropic) electron velocity distribution function. It is shown that during the interaction of a fast electron beam with a cold plasma, both the conditions for losing stability and the growth rate of disturbances do not depend on the form of the electron distribution function (EDF) of a plasma and are determined only by the ratio of the electron beam energy to the mean energy in a plasma. With an increase in the mean electron energy in the plasma, it becomes necessary to take into account the following energy moments of the EDF. It was found that the plasma anisotropy has a significant effect on both the stability loss conditions and the growth rate. The physical reason for this effect is the shift in the plasma frequency due to the Doppler effect caused by the plasma anisotropy in the coordinate system moving along with the beam. Other findings include a region of anomalous dispersion of the electron beam–plasma system and regions of negative group velocity of perturbations in such system. Physical interpretations are proposed for all the observed effects

    Modulation of the Translation Efficiency of Heterologous mRNA and Target Protein Stability in a Plant System: The Case Study of Interferon-αA

    No full text
    A broad and amazingly intricate network of mechanisms underlying the decoding of a plant genome into the proteome forces the researcher to design new strategies to enhance both the accumulation of recombinant proteins and their purification from plants and to improve the available relevant strategies. In this paper, we propose new approaches to optimize a codon composition of target genes (case study of interferon-αA) and to search for regulatory sequences (case study of 5′UTR), and we demonstrated their effectiveness in increasing the synthesis of recombinant proteins in plant systems. In addition, we convincingly show that the approach utilizing stabilization of the protein product according to the N-end rule or a new protein-stabilizing partner (thermostable lichenase) is sufficiently effective and results in a significant increase in the protein yield manufactured in a plant system. Moreover, it is validly demonstrated that thermostable lichenase as a protein-stabilizing partner not only has no negative effect on the target protein activity (interferon-αA) integrated in its sequence, but rather enhances the accumulation of the target protein product in plant cells. In addition, the retention of lichenase enzyme activity and interferon biological activity after the incubation of plant protein lysates at 65 °C and precipitation of nontarget proteins with ethanol is applicable to a rapid and inexpensive purification of fusion proteins, thereby confirming the utility of thermostable lichenase as a protein-stabilizing partner for plant systems

    Computational and Experimental Tools to Monitor the Changes in Translation Efficiency of Plant mRNA on a Genome-Wide Scale: Advantages, Limitations, and Solutions

    No full text
    The control of translation in the course of gene expression regulation plays a crucial role in plants’ cellular events and, particularly, in responses to environmental factors. The paradox of the great variance between levels of mRNAs and their protein products in eukaryotic cells, including plants, requires thorough investigation of the regulatory mechanisms of translation. A wide and amazingly complex network of mechanisms decoding the plant genome into proteome challenges researchers to design new methods for genome-wide analysis of translational control, develop computational algorithms detecting regulatory mRNA contexts, and to establish rules underlying differential translation. The aims of this review are to (i) describe the experimental approaches for investigation of differential translation in plants on a genome-wide scale; (ii) summarize the current data on computational algorithms for detection of specific structure–function features and key determinants in plant mRNAs and their correlation with translation efficiency; (iii) highlight the methods for experimental verification of existed and theoretically predicted features within plant mRNAs important for their differential translation; and finally (iv) to discuss the perspectives of discovering the specific structural features of plant mRNA that mediate differential translation control by the combination of computational and experimental approaches

    Surface Quality of Metal Parts Produced by Laser Powder Bed Fusion: Ion Polishing in Gas-Discharge Plasma Proposal

    No full text
    Additive manufacturing has evolved over the past decades into a technology that provides freedom of design through the ability to produce complex-shaped solid structures, reducing the operational time and material volumes in manufacturing significantly. However, the surface of parts manufactured by the additive method remains now extremely rough. The current trend of expanding the industrial application of additive manufacturing is researching surface roughness and finishing. Moreover, the limited choice of materials suitable for additive manufacturing does not satisfy the diverse design requirements, necessitating additional coatings deposition. Requirements for surface treatment and coating deposition technology depend on the intended use of the parts, their material, and technology. In most cases, they cannot be determined based on existing knowledge and experience. It determines the scientific relevance of the analytical research and development of scientific and technological principles of finishing parts obtained by laser additive manufacturing and functional coating deposition. There is a scientific novelty of analytical research that proposes gas-discharge plasma processing for finishing laser additive manufactured parts and technological principles development including three processing stages—explosive ablation, polishing with a concentrated beam of fast neutral argon atoms, and coating deposition—for the first time

    Ranking Technologies of Additive Manufacturing of Removable Complete Dentures by the Results of Their Mechanical Testing

    No full text
    In this study, a methodology was developed for ranking manufacturing technologies of removable complete dentures (RCDs) according to the results of their full-scale mechanical tests. The actuality of the study is motivated by establishing the advantages and drawbacks of 3D-printed RCDs in contrast with ones manufactured via an analog protocol. The RCDs were fabricated via four technological routes that included various combinations of subtractive technologies (hot polymerization/HP and CAD/CAM milling) and additive manufacturing (digital light processing/DLP) ones and the installation of commercially available cosmetic denture teeth (DT). In the mechanical tests, different blocks of teeth (incisors, canines, premolars and molars) were loaded. To solve the ranking problem, it was proposed to interpret the results of the mechanical tests in terms of the reliability, durability and compliance/stiffness criteria. For this purpose, the combined AHP-VIKOR method was applied. In addition, a computer simulation of the mechanical loading conditions and the response of the RCDs was performed based on the finite element method (FEM). As the key conclusion, it was stated that additive manufacturing (AM) methods are competitive and cost-effective techniques for the fabrication of RCDs
    corecore