449 research outputs found

    Uniqueness of Kusuoka Representations

    Full text link
    This paper addresses law invariant coherent risk measures and their Kusuoka representations. By elaborating the existence of a minimal representation we show that every Kusuoka representation can be reduced to its minimal representation. Uniqueness -- in a sense specified in the paper -- of the risk measure's Kusuoka representation is derived from this initial result. Further, stochastic order relations are employed to identify the minimal Kusuoka representation. It is shown that measures in the minimal representation are extremal with respect to the order relations. The tools are finally employed to provide the minimal representation for important practical examples. Although the Kusuoka representation is usually given only for nonatomic probability spaces, this presentation closes the gap to spaces with atoms

    Integration of Skyline Queries into Spark SQL

    Full text link
    Skyline queries are frequently used in data analytics and multi-criteria decision support applications to filter relevant information from big amounts of data. Apache Spark is a popular framework for processing big, distributed data. The framework even provides a convenient SQL-like interface via the Spark SQL module. However, skyline queries are not natively supported and require tedious rewriting to fit the SQL standard or Spark's SQL-like language. The goal of our work is to fill this gap. We thus provide a full-fledged integration of the skyline operator into Spark SQL. This allows for a simple and easy to use syntax to input skyline queries. Moreover, our empirical results show that this integrated solution of skyline queries by far outperforms a solution based on rewriting into standard SQL

    Probing many-body dynamics on a 51-atom quantum simulator

    Get PDF
    Controllable, coherent many-body systems can provide insights into the fundamental properties of quantum matter, enable the realization of new quantum phases and could ultimately lead to computational systems that outperform existing computers based on classical approaches. Here we demonstrate a method for creating controlled many-body quantum matter that combines deterministically prepared, reconfigurable arrays of individually trapped cold atoms with strong, coherent interactions enabled by excitation to Rydberg states. We realize a programmable Ising-type quantum spin model with tunable interactions and system sizes of up to 51 qubits. Within this model, we observe phase transitions into spatially ordered states that break various discrete symmetries, verify the high-fidelity preparation of these states and investigate the dynamics across the phase transition in large arrays of atoms. In particular, we observe robust manybody dynamics corresponding to persistent oscillations of the order after a rapid quantum quench that results from a sudden transition across the phase boundary. Our method provides a way of exploring many-body phenomena on a programmable quantum simulator and could enable realizations of new quantum algorithms.Comment: 17 pages, 13 figure
    corecore