8 research outputs found

    Complete mitogenome of the ixodid tick Dermacentor reticulatus (Acari: Ixodida)

    No full text
    Here, we present the complete mitochondrial DNA sequence of Dermacentor reticulatus. The mitogenome is 14,806 bp and contains 13 protein-coding, 2 rRNA, and 22 tRNA genes, along with 2 control regions. Dermacentor reticulatus mitogenome has the common mitochondrial gene order of Metastriata ticks. It is phylogenetically close to the mitogenomes of Dermacentor ticks, of which D. everestanus mitogenome is the closest with 85.7% similarity. These data provide insights into the phylogenetic relations among Dermacentor ticks

    Severe cases of seasonal influenza in Russia in 2017-2018.

    No full text
    The 2017-2018 influenza epidemic season in Russia was characterized by a relatively low morbidity and mortality. We evaluated herd immunity prior to the 2017-2018 influenza season in hemagglutination inhibition assay, and performed characterization of influenza viruses isolated from severe or fatal influenza cases and from influenza cases in people vaccinated in the fall of 2017. During the 2017-2018 epidemic season, 87 influenza A and B viruses were isolated and viruses of the 75 influenza cases, including selected viral isolates and viruses analyzed directly from the original clinical material, were genetically characterized. The analyzed A(H1N1)pdm09 viruses belonged to clade 6B.1, B/Yamagata-like viruses belonged to clade 3, and B/Victoria-like viruses belonged to clade 1A and they were antigenically similar to the corresponding vaccine strains. A(H3N2) viruses belonged to clade 3C.2a and were difficult to characterize antigenically and the analysis indicated antigenic differences from the corresponding egg-grown vaccine strain. The next generation sequencing revealed the presence of D222/G/N polymorphism in the hemagglutinin gene in 32% of the analyzed A(H1N1)pdm09 lethal cases. This study demonstrated the importance of monitoring D222G/N polymorphism, including detection of minor viral variants with the mutations, in the hemagglutinin gene of A(H1N1)pdm09 for epidemiological surveillance. One strain of influenza virus A(H1N1)pdm09 was resistant to oseltamivir and had the H275Y amino acid substitution in the NA protein. All other isolates were susceptible to NA inhibitors. Prior to the 2017-2018 epidemic season, 67.4 million people were vaccinated, which accounted for 46.6% of the country's population. Just before the epidemic season 33-47% and 24-30% of blood sera samples collected within the territory of Russia showed the presence of protective antibody titers against vaccine strains of influenza A and influenza B/Victoria-like, respectively. Mass vaccination of the population had evidently reduced the severity of the flu epidemic during the 2017-2018 influenza epidemic season in Russia

    Re-Emergence of Circulation of Seasonal Influenza during COVID-19 Pandemic in Russia and Receptor Specificity of New and Dominant Clade 3C.2a1b.2a.2 A(H3N2) Viruses in 2021–2022

    No full text
    The circulation of seasonal influenza in 2020–2021 around the world was drastically reduced after the start of the COVID-19 pandemic and the implementation of mitigation strategies. The influenza virus circulation reemerged in 2021–2022 with the global spread of the new genetic clade 3C.2a1b.2a.2 of A(H3N2) viruses. The purpose of this study was to characterize influenza viruses in the 2021–2022 season in Russia and to analyze the receptor specificity properties of the 3C.2a1b.2a.2 A(H3N2) viruses. Clinical influenza samples were collected at the local Sanitary-and-Epidemiological Centers of Rospotrebnadzor. Whole genome sequencing was performed using NGS. The receptor specificity of hemagglutinin was evaluated using molecular modeling and bio-layer interferometry. Clinical samples from 854 cases of influenza A and B were studied; A(H3N2) viruses were in the majority of the samples. All genetically studied A(H3N2) viruses belonged to the new genetic clade 3C.2a1b.2a.2. Molecular modeling analysis suggested a higher affinity of hemagglutinin of 3C.2a1b.2a.2. A(H3N2) viruses to the α2,6 human receptor. In vitro analysis using a trisaccharide 6’-Sialyl-N-acetyllactosamine receptor analog did not resolve the differences in the receptor specificity of 3C.2a1b.2a.2 clade viruses from viruses belonging to the 3C.2a1b.2a.1 clade. Further investigation of the A(H3N2) viruses is required for the evaluation of their possible adaptive advantages. Constant monitoring and characterization of influenza are critical for epidemiological analysis

    The Viromes of Mosquitoes from the Natural Landscapes of Western Siberia

    No full text
    The metagenomic analysis of mosquitoes allows for the genetic characterization of mosquito-associated viruses in different regions of the world. This study applied a metagenomic approach to identify novel viral sequences in seven species of mosquitoes collected from the Novosibirsk region of western Siberia. Using NGS sequencing, we identified 15 coding-complete viral polyproteins (genomes) and 15 viral-like partial sequences in mosquitoes. The complete sequences for novel viruses or the partial sequences of capsid proteins, hypothetical viral proteins, and RdRps were used to identify their taxonomy. The novel viral sequences were classified within the orders Tymovirales and Picornavirales and the families Partitiviridae, Totiviridae, Tombusviridae, Iflaviridae, Nodaviridae, Permutotetraviridae, and Solemoviridae, with several attributed to four unclassified RNA viruses. Interestingly, the novel putative viruses and viral sequences were mainly associated with the mosquito Coquillettidia richardii. This study aimed to increase our understanding of the viral diversity in mosquitoes found in the natural habitats of Siberia, which is characterized by very long, snowy, and cold winters

    The First Case of Zika Virus Disease in Guinea: Description, Virus Isolation, Sequencing, and Seroprevalence in Local Population

    No full text
    The Zika virus (ZIKV) is a widespread mosquito-borne pathogen. Phylogenetically, two lineages of ZIKV are distinguished: African and Asian–American. The latter became the cause of the 2015–2016 pandemic, with severe consequences for newborns. In West African countries, the African lineage was found, but there is evidence of the emergence of the Asian–American lineage in Cape Verde and Angola. This highlights the need to not only monitor ZIKV but also sequence the isolates. In this article, we present a case report of Zika fever in a pregnant woman from Guinea identified in 2018. Viral RNA was detected through qRT-PCR in a serum sample. In addition, the seroconversion of anti-Zika IgM and IgG antibodies was detected in repeated blood samples. Subsequently, the virus was isolated from the C6/36 cell line. The detected ZIKV belonged to the African lineage, the Nigerian sublineage. The strains with the closest sequences were isolated from mosquitoes in Senegal in 2011 and 2015. In addition, we conducted the serological screening of 116 blood samples collected from patients presenting to the hospital of Faranah with fevers during the period 2018–2021. As a result, it was found that IgM-positive patients were identified each year and that the seroprevalence varied between 5.6% and 17.1%
    corecore