103 research outputs found
A Formal Vinyl Sulfonyl Nazarov Cyclization Accesses 9-(tosylmethyl)-2,3,4,4a-tetrahydro-1H-fluorenes
During the course of a proposed route to synthesize ladderane lipids, a novel one-pot 4π electrocyclic ring opening followed by a Nazarov-type 4π electrocyclization reaction was discovered. The reaction was studied further due to its potential as a method for accessing the privileged tetrahydrofluorene scaffold and the opportunities for further functionalization provided by the allyl sulfone moiety. Optimized conditions for the transformation involved refluxing model substrate 7-phenyl-8-tosylbicyclo[4.2.0]oct-6-ene in 1,2-dichloroethane for 3 h to generate intermediate (E)-1-((2-(cyclohex-1-en-1-yl)-2-phenylvinyl)sulfonyl)-4-methylbenzene. Upon cooling to room temperature, addition of 1.2 equiv iron(III) chloride promotes cyclization to furnish 9-(tosylmethyl)-2,3,4,4a-tetrahydro-1H-fluorene after 10 h in 78% yield. In order to determine the effect electronics may have on the transformation, functionality was introduced onto the phenyl ring. While no noticeable effect was observed on the electrocyclic ring opening step, the nature of the substituents significantly affected the quantity of promoter required for the cyclization step. Although a superstoichiometric amount of iron(III) chloride and heat was required with an electron withdrawing substituent on the aryl ring, electron donating substituents lowered the activation barrier to cyclization – necessitating only catalytic amounts of iron(III) chloride at room temperature. This transformation represents the first report of a Nazarov cyclization with a vinyl sulfone on the central carbon
PAH emission in the proplyd HST10: what is the mechanism behind photoevaporation?
Proplyds are photodissociation region (PDR)-like cometary cocoons around
young stars which are thought to originate through photo-evaporation of the
central protoplanetary disk by external UV radiation from the nearby OB stars.
This letter presents spatially resolved mid-infrared imaging and spectroscopy
of the proplyd HST10 obtained with the VLT/VISIR instrument. These observations
allow us to detect Polycyclic Aromatic Hydrocarbons (PAH) emission in the
proplyd photodissociation region and to study the general properties of PAHs in
proplyds for the first time. We find that PAHs in HST10 are mostly neutral and
at least 50 times less abundant than typical values found for the diffuse ISM
or the nearby Orion Bar. With such a low PAH abundance, photoelectric heating
is significantly reduced. If this low abundance pertains also to the original
disk material, gas heating rates could be too low to efficiently drive
photoevaporation unless other processes can be identified. Alternatively, the
model behind the formation of proplyds as evaporating disks may have to be
revised.Comment: 5 pages, 3 figures, 1 tabl
Statistical-mechanical theory of ultrasonic absorption in molecular liquids
We present results of theoretical description of ultrasonic phenomena in
molecular liquids. In particular, we are interested in the development of
microscopical, i.e., statistical-mechanical framework capable to explain the
long living puzzle of the excess ultrasonic absorption in liquids. Typically,
ultrasonic wave in a liquid can be generated by applying the periodically
alternating external pressure with the angular frequency that corresponds to
the ultrasound. If the perturbation introduced by such process is weak - its
statistical-mechanical treatment can be done with the use of the linear
response theory. We treat the liquid as a system of interacting sites, so that
all the response/aftereffect functions as well as the energy dissipation and
generalized (wave-vector and frequency dependent) ultrasonic absorption
coefficient are obtained in terms of familiar site-site static and time
correlation functions such as static structure factors or intermediate
scattering functions. To express the site-site intermediate scattering
functions we refer to the site-site memory equations in the mode-coupling
approximation for the first-order memory kernels, while equilibrium properties
such as site-site static structure factors, direct and total correlation
functions are deduced from the integral equation theory of molecular liquids
known as RISM or one of its generalizations. All the formalism is phrased in a
general manner, hence the obtained results are expected to work for arbitrary
type of molecular liquid including simple, ionic, polar, and non-polar liquids.Comment: 14 pages, 1 eps-figure, RevTeX4-forma
Multi-Particle Collision Dynamics -- a Particle-Based Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids
In this review, we describe and analyze a mesoscale simulation method for
fluid flow, which was introduced by Malevanets and Kapral in 1999, and is now
called multi-particle collision dynamics (MPC) or stochastic rotation dynamics
(SRD). The method consists of alternating streaming and collision steps in an
ensemble of point particles. The multi-particle collisions are performed by
grouping particles in collision cells, and mass, momentum, and energy are
locally conserved. This simulation technique captures both full hydrodynamic
interactions and thermal fluctuations. The first part of the review begins with
a description of several widely used MPC algorithms and then discusses
important features of the original SRD algorithm and frequently used
variations. Two complementary approaches for deriving the hydrodynamic
equations and evaluating the transport coefficients are reviewed. It is then
shown how MPC algorithms can be generalized to model non-ideal fluids, and
binary mixtures with a consolute point. The importance of angular-momentum
conservation for systems like phase-separated liquids with different
viscosities is discussed. The second part of the review describes a number of
recent applications of MPC algorithms to study colloid and polymer dynamics,
the behavior of vesicles and cells in hydrodynamic flows, and the dynamics of
viscoelastic fluids
The effects of long-term total parenteral nutrition on gut mucosal immunity in children with short bowel syndrome: a systematic review
BACKGROUND: Short bowel syndrome (SBS) is defined as the malabsorptive state that often follows massive resection of the small intestine. Most cases originate in the newborn period and result from congenital anomalies. It is associated with a high morbidity, is potentially lethal and often requires months, sometimes years, in the hospital and home on total parenteral nutrition (TPN). Long-term survival without parenteral nutrition depends upon establishing enteral nutrition and the process of intestinal adaptation through which the remaining small bowel gradually increases its absorptive capacity. The purpose of this article is to perform a descriptive systematic review of the published articles on the effects of TPN on the intestinal immune system investigating whether long-term TPN induces bacterial translocation, decreases secretory immunoglobulin A (S-IgA), impairs intestinal immunity, and changes mucosal architecture in children with SBS. METHODS: The databases of OVID, such as MEDLINE and CINAHL, Cochran Library, and Evidence-Based Medicine were searched for articles published from 1990 to 2001. Search terms were total parenteral nutrition, children, bacterial translocation, small bowel syndrome, short gut syndrome, intestinal immunity, gut permeability, sepsis, hyperglycemia, immunonutrition, glutamine, enteral tube feeding, and systematic reviews. The goal was to include all clinical studies conducted in children directly addressing the effects of TPN on gut immunity. RESULTS: A total of 13 studies were identified. These 13 studies included a total of 414 infants and children between the ages approximately 4 months to 17 years old, and 16 healthy adults as controls; and they varied in design and were conducted in several disciplines. The results were integrated into common themes. Five themes were identified: 1) sepsis, 2) impaired immune functions: In vitro studies, 3) mortality, 4) villous atrophy, 5) duration of dependency on TPN after bowel resection. CONCLUSION: Based on this exhaustive literature review, there is no direct evidence suggesting that TPN promotes bacterial overgrowth, impairs neutrophil functions, inhibits blood's bactericidal effect, causes villous atrophy, or causes to death in human model. The hypothesis relating negative effects of TPN on gut immunity remains attractive, but unproven. Enteral nutrition is cheaper, but no safer than TPN. Based on the current evidence, TPN seems to be safe and a life saving solution
PDRs4All III: JWST's NIR spectroscopic view of the Orion Bar
(Abridged) We investigate the impact of radiative feedback from massive stars
on their natal cloud and focus on the transition from the HII region to the
atomic PDR (crossing the ionisation front (IF)), and the subsequent transition
to the molecular PDR (crossing the dissociation front (DF)). We use
high-resolution near-IR integral field spectroscopic data from NIRSpec on JWST
to observe the Orion Bar PDR as part of the PDRs4All JWST Early Release Science
Program. The NIRSpec data reveal a forest of lines including, but not limited
to, HeI, HI, and CI recombination lines, ionic lines, OI and NI fluorescence
lines, Aromatic Infrared Bands (AIBs including aromatic CH, aliphatic CH, and
their CD counterparts), CO2 ice, pure rotational and ro-vibrational lines from
H2, and ro-vibrational lines HD, CO, and CH+, most of them detected for the
first time towards a PDR. Their spatial distribution resolves the H and He
ionisation structure in the Huygens region, gives insight into the geometry of
the Bar, and confirms the large-scale stratification of PDRs. We observe
numerous smaller scale structures whose typical size decreases with distance
from Ori C and IR lines from CI, if solely arising from radiative recombination
and cascade, reveal very high gas temperatures consistent with the hot
irradiated surface of small-scale dense clumps deep inside the PDR. The H2
lines reveal multiple, prominent filaments which exhibit different
characteristics. This leaves the impression of a "terraced" transition from the
predominantly atomic surface region to the CO-rich molecular zone deeper in.
This study showcases the discovery space created by JWST to further our
understanding of the impact radiation from young stars has on their natal
molecular cloud and proto-planetary disk, which touches on star- and planet
formation as well as galaxy evolution.Comment: 52 pages, 30 figures, submitted to A&
New genetic loci link adipose and insulin biology to body fat distribution.
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
A Spectral Method to Compute the Tides of Laterally Heterogeneous Bodies
Body tides reveal information about planetary interiors and affect their evolution. Most models to compute body tides rely on the assumption of a spherically symmetric interior. However, several processes can lead to lateral variations of interior properties. We present a new spectral method to compute the tidal response of laterally heterogeneous bodies. Compared to previous spectral methods, our approach is not limited to small-amplitude lateral variations; compared to finite element codes, this approach is more computationally efficient. While the tidal response of a spherically symmetric body has the same wavelength as the tidal force; lateral heterogeneities produce an additional tidal response with a spectra that depends on the spatial pattern of such variations. For Mercury, the Moon, and Io, the amplitude of this signal is as high as 1%-10% of the main tidal response for long-wavelength shear modulus variations higher than ∼10% of the mean shear modulus. For Europa, Ganymede, and Enceladus, shell-thickness variations of 50% of the mean shell thickness can cause an additional signal of ∼1% and ∼10% for the Jovian moons and Encelaudus, respectively. Future missions, such as BepiColombo and JUICE, might measure these signals. Lateral variations of viscosity affect the distribution of tidal heating. This can drive the thermal evolution of tidally active bodies and affect the distribution of active regions.Planetary Exploratio
- …