52 research outputs found

    F-actin binding is essential for coronin 1B function in vivo

    Get PDF
    Coronins are conserved F-actin binding proteins that have been implicated in a variety of processes including fibroblast migration, phagocytosis, and chemotaxis. Recent data from our lab indicate that coronin 1B coordinates Arp2/3-dependent actin filament nucleation and cofilin-mediated filament turnover at the leading edge of migrating fibroblasts. Analysis of coronin function has been hampered by the lack of a clear understanding of how coronin interacts with F-actin. Here, we identify a surface-exposed conserved arginine residue at position 30 (R30), which is crucial for coronin 1B binding to F-actin both in vitro and in vivo. Using actin co-sedimentation, we demonstrate that coronin 1B binds with high affinity to ATP/ADP

    Hairpin Formation in Friedreich's Ataxia Triplet Repeat Expansion

    Get PDF
    Triplet repeat tracts occur throughout the human genome. Expansions of a (GAA)(n)/(TTC)(n) repeat tract during its transmission from parent to child are tightly associated with the occurrence of Friedreich's ataxia. Evidence supports DNA slippage during DNA replication as the cause of the expansions. DNA slippage results in single-stranded expansion intermediates. Evidence has accumulated that predicts that hairpin structures protect from DNA repair the expansion intermediates of all of the disease-associated repeats except for those of Friedreich's ataxia. How the latter repeat expansions avoid repair remains a mystery because (GAA)(n) and (TTC)(n) repeats are reported not to self-anneal. To characterize the Friedreich's ataxia intermediates, we generated massive expansions of (GAA)(n) and (TTC)(n) during DNA replication in vitro using human polymerase beta and the Klenow fragment of Escherichia coli polymerase I. Electron microscopy, endonuclease cleavage, and DNA sequencing of the expansion products demonstrate, for the first time, the occurrence of large and growing (GAA)(n) and (TTC)(n) hairpins during DNA synthesis. The results provide unifying evidence that predicts that hairpin formation during DNA synthesis mediates all of the disease-associated, triplet repeat expansions

    Cadmium down-regulates expression of XIAP at the post-transcriptional level in prostate cancer cells through an NF-ÎșB-independent, proteasome-mediated mechanism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cadmium has been classified as a human carcinogen, affecting health through occupational and environmental exposure. Cadmium has a long biological half-life (>25 years), due to the flat kinetics of its excretion. The prostate is one of the organs with highest levels of cadmium accumulation. Importantly, patients with prostate cancer appear to have higher levels of cadmium both in the circulation and in prostatic tissues.</p> <p>Results</p> <p>In the current report, we demonstrate for the first time that cadmium down-regulates expression of the X-linked inhibitor of apoptosis protein (XIAP) in prostate cancer cells. Cadmium-mediated XIAP depletion occurs at the post-transcriptional level via an NF-ÎșB-independent, proteasome-mediated mechanism and coincides with an increased sensitivity of prostate cancer cells to TNF-α-mediated apoptosis. Prolonged treatment with cadmium results in selection of prostate cancer cells with apoptosis-resistant phenotype. Development of apoptosis-resistance coincides with restoration of XIAP expression in cadmium-selected PC-3 cells.</p> <p>Conclusions</p> <p>Selection of cadmium-resistant cells could represent an adaptive survival mechanism that may contribute to progression of prostatic malignancies.</p

    Rolling circle DNA replication by extracts of herpes simplex virus type 1-infected human cells.

    Get PDF
    Whole-cell extracts of herpes simplex virus type 1-infected human cells (293 cells) can promote the rolling circle replication of circular duplex DNA molecules. The products of the reaction are longer than monomer unit length and are the result of semiconservative DNA replication by the following criteria: (i) resistance to DpnI and susceptibility to MboI restriction enzymes, (ii) shift in density on a CsCl gradient of the products synthesized in the presence of bromo-dUTP to a position on the gradient consistent with those of molecules composed mainly of one parental DNA strand and one newly synthesized DNA strand, and (iii) the appearance in the electron microscope of molecules consisting of duplex circles with multiunit linear appendages, a characteristic of a rolling circle mode of DNA replication. The reaction requires ATP and is dependent on herpes simplex virus type 1-encoded DNA polymerase

    Coronin 1B Antagonizes Cortactin and Remodels Arp2/3-Containing Actin Branches in Lamellipodia

    Get PDF
    The dendritic actin network generated by Arp2/3 complex in lamellipodia underlies formation of protrusions, directional sensing and migration. While the generation of this network is well studied, the mechanisms regulating network disassembly are poorly understood. We report that Coronin 1B disassembles Arp2/3-containing actin filament branches by inducing Arp2/3 dissociation. This activity is antagonized by Cortactin, a filament branch stabilizer. Consistent with this biochemical competition, depletion of both proteins partially rescues defects in lamellipodial dynamics observed upon depletion of either protein alone. Coronin 1B targets actin branches in a manner that is mutually exclusive with Arp2/3 complex and alters the branch angle. We conclude that Coronin 1B replaces Arp2/3 complex at actin filament branches as the dendritic network matures and drives the turnover of branched actin networks

    Details of ssDNA annealing revealed by an HSV-1 ICP8–ssDNA binary complex

    Get PDF
    Infected cell protein 8 (ICP8) from herpes simplex virus 1 was first identified as a single-strand (ss) DNA-binding protein. It is essential for, and abundant during, viral replication. Studies in vitro have shown that ICP8 stimulates model replication reactions, catalyzes annealing of complementary ssDNAs and, in combination with UL12 exonuclease, will catalyze ssDNA annealing homologous recombination. DNA annealing and strand transfer occurs within large oligomeric filaments of ssDNA-bound ICP8. We present the first 3D reconstruction of a novel ICP8–ssDNA complex, which seems to be the basic unit of the DNA annealing machine. The reconstructed volume consists of two nonameric rings containing ssDNA stacked on top of each other, corresponding to a molecular weight of 2.3 MDa. Fitting of the ICP8 crystal structure suggests a mechanism for the annealing reaction catalyzed by ICP8, which is most likely a general mechanism for protein-driven DNA annealing

    Amplification of Telomeric Arrays via Rolling-circle Mechanism

    Get PDF
    Alternative (telomerase-independent) lengthening of telomeres mediated through homologous recombination is often accompanied by a generation of extrachromosomal telomeric circles (t-circles), whose role in direct promotion of recombinational telomere elongation has been recently demonstrated. Here we present evidence that t-circles in a natural telomerase-deficient system of mitochondria of the yeast Candida parapsilosis replicate independently of the linear chromosome via a rolling-circle mechanism. This is supported by an observation of (i) single-stranded DNA consisting of concatameric arrays of telomeric sequence, (ii) lasso-shaped molecules representing rolling-circle intermediates, and (iii) preferential incorporation of deoxyribonucleotides into telomeric fragments and t-circles. Analysis of naturally occurring variant t-circles revealed conserved motifs with potential function in driving the rolling-circle replication. These data indicate that extrachromosomal t-circles observed in a wide variety of organisms, including yeasts, plants, Xenopus laevis, and certain human cell lines, may represent independent replicons generating telomeric sequences and, thus, actively participating in telomere dynamics. Moreover, because of the promiscuous occurrence of t-circles across phyla, the results from yeast mitochondria have implications related to the primordial system of telomere maintenance, providing a paradigm for evolution of telomeres in nuclei of early eukaryotes

    The Epstein-Barr Virus Polymerase Accessory Factor BMRF1 Adopts a Ring-shaped Structure as Visualized by Electron Microscopy

    Get PDF
    Epstein-Barr virus (EBV) encodes a set of core replication factors used during lytic infection in human cells that parallels the factors used in many other systems. These include a DNA polymerase and its accessory factor, a helicase/primase, and a single strand binding protein. The EBV polymerase accessory factor has been identified as the product of the BMRF1 gene and has been shown by functional assays to increase the activity and processivity of the polymerase. Unlike other members of this class of factors, BMRF1 is also a transcription factor regulating certain EBV genes. Although several polymerase accessory factors, including eukaryotic proliferating cell nuclear antigen, Escherichia coli beta protein, and T4 gene 45 protein have been shown to form oligomeric rings termed sliding clamps, nothing is known about the oligomeric state of BMRF1 or whether it forms a ring. In this work, BMRF1 was purified directly from human cells infected with an adenovirus vector expressing the BMRF1 gene product. The protein was purified to near homogeneity, and examination by negative staining electron microscopy revealed large, flat, ring-shaped molecules with a diameter of 15.5 +/- 0.8 nm and a distinct 5.3-nm diameter hole in the center. The size of these rings is consistent with an oligomer of 6 monomers, nearly twice as large as the trimeric proliferating cell nuclear antigen ring. Unlike the herpes simplex virus UL42 homologue, BMRF1 was found to self-associate in solution. These findings extend the theme of polymerase accessory factors adopting ring-shaped structures and provide an example in which the ring is significantly larger than any previously described sliding clamp

    The Bipolar Filaments Formed by Herpes Simplex Virus Type 1 SSB/Recombination Protein (ICP8) Suggest a Mechanism for DNA Annealing

    Get PDF
    Herpes simplex virus type 1 encodes a multifunctional protein, ICP8, which serves both as a single strand binding protein and recombinase, catalyzing reactions involved in replication and recombination of the viral genome. In the presence of divalent ions and at low temperature, previous electron microscopic (EM) studies showed that ICP8 will form long left-handed helical filaments. Here EM image reconstruction reveals that the filaments are bipolar, with an asymmetric unit containing two subunits of ICP8 that constitute a symmetrical dimer. This organization of the filament has been confirmed using Scanning Transmission Electron Microscopy. The pitch of the filaments is ~ 250 Å, with ~ 6.2 dimers per turn. Docking of a crystal structure of ICP8 into the reconstructed filament shows that the C-terminal domain of ICP8, attached to the body of the subunit by a flexible linker containing ~ 10 residues, is packed into a pocket in the body of a neighboring subunit in the crystal in a similar manner as in the filament. However, the interactions between the large N-terminal domains are quite different in the filament from that observed in the crystal. A previously proposed model for ICP8 binding single-stranded DNA, based upon the crystal structure, leads to a model for a continuous strand of ssDNA near the filament axis. The bipolar nature of the ICP8 filaments means that a second strand of ssDNA would be running through this filament in the opposite orientation, and this provides a potential mechanism for how ICP8 anneals complementary single stranded DNA into double-stranded DNA, where each strand runs in opposite directions

    Architecture of the Bacteriophage T4 Replication Complex Revealed with Nanoscale Biopointers

    Get PDF
    Our previous electron microscopy of DNA replicated by the bacteriophage T4 proteins showed a single complex at the fork, thought to contain the leading and lagging strand proteins, as well as the protein-covered single-stranded DNA on the lagging strand folded into a compact structure. "Trombone" loops formed from nascent lagging strand fragments were present on a majority of the replicating molecules (Chastain, P., Makhov, A. M., Nossal, N. G., and Griffith, J. D. (2003) J. Biol. Chem. 278, 21276-21285). Here we probe the composition of this replication complex using nanoscale DNA biopointers to show the location of biotin-tagged replication proteins. We find that a large fraction of the molecules with a trombone loop had two pointers to polymerase, providing strong evidence that the leading and lagging strand polymerases are together in the replication complex. 6% of the molecules had two loops, and 31% of these had three pointers to biotin-tagged polymerase, suggesting that the two loops result from two fragments that are being extended simultaneously. Under fixation conditions that extend the lagging strand, occasional molecules show two nascent lagging strand fragments, each being elongated by a biotin-tagged polymerase. T4 41 helicase is present in the complex on a large fraction of actively replicating molecules but on a smaller fraction of molecules with a stalled polymerase. Unexpectedly, we found that 59 helicase-loading protein remains on the fork after loading the helicase and is present on molecules with extensive replication
    • 

    corecore