4 research outputs found

    ΠžΠ¦Π•ΠΠšΠ Π‘Π’ΠΠ’Π˜Π‘Π’Π˜Π§Π•Π‘ΠšΠ˜Π₯ Π₯ΠΠ ΠΠšΠ’Π•Π Π˜Π‘Π’Π˜Πš ΠœΠ˜ΠžΠ“Π ΠΠ€Π˜Π§Π•Π‘ΠšΠžΠ™ ΠŸΠžΠœΠ•Π₯И ПРИ ΠœΠΠžΠ“ΠžΠšΠΠΠΠ›Π¬ΠΠžΠ™ Π Π•Π“Π˜Π‘Π’Π ΠΠ¦Π˜Π˜ Π­Π›Π•ΠšΠ’Π ΠžΠšΠΠ Π”Π˜ΠžΠ‘Π˜Π“ΠΠΠ›Π

    Get PDF
    Electromyographic noise is one of the most common noises in electrocardiogram. In case of several electrocardiogram leads, electromyographic noise affects each lead to different extent. It can be taken into account when developing algorithms for multilead electrocardiogram record processing. However, in the existing literature, there is no information about the relationship of electromyographic noise in various ECG leads and their joint probability distribution. The purpose of this paper is to study statistical characteristics of electromyographic noise in ECG signal, from which the electromyographic noise is extracted. The paper proposes a method for extracting electromyographic noise from electrocardiogram signal, based on a polynomial approximation of electrocardiogram signal fragments in sliding window with overlapping fragment subsequent weight averaging. Using this method, fragments of electromyographic noise are extracted from multichannel electrocardiogram records. Based on the obtained data, a joint probability distribution function of electromyographic noise in two adjacent leads is selected, and the correlation relationships between the electromyographic noise in various ECG leads are investigated. The results show that the joint probability distribution function of electromyographic noise in two adjacent leads in the first approximation can be described using bivariate normal distribution. In addition, between the samples of electromyographic noise from two adjacent leads quite strong correlation relationships can be observed.ΠœΠΈΠΎΠ³Ρ€Π°Ρ„ΠΈΡ‡Π΅ΡΠΊΠ°Ρ ΠΏΠΎΠΌΠ΅Ρ…Π° являСтся ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· самых распространСнных ΠΏΠΎΠΌΠ΅Ρ…, ΠΏΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Π² элСктрокардиосигналС. Π’ случаС использования Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… ΠΎΡ‚Π²Π΅Π΄Π΅Π½ΠΈΠΉ элСктрокардиосигнала миографичСская ΠΏΠΎΠΌΠ΅Ρ…Π° Π² Ρ€Π°Π·Π½ΠΎΠΉ стСпСни ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ влияниС Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΠΈΠ· ΠΎΡ‚Π²Π΅Π΄Π΅Π½ΠΈΠΉ. Π­Ρ‚ΠΎ влияниС ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΡƒΡ‡Ρ‚Π΅Π½ΠΎ ΠΏΡ€ΠΈ построСнии Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠΊΠ°Π½Π°Π»ΡŒΠ½Ρ‹Ρ… записСй элСктрокардиосигнала. Однако Π² ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ нСдостаточно ΠΏΠΎΠ»Π½ΠΎ исслСдован Π°Π½Π°Π»ΠΈΠ· взаимосвязСй отсчСтов миографичСской ΠΏΠΎΠΌΠ΅Ρ…ΠΈ Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… отвСдСниях элСктрокардиосигнала. ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹ – эмпиричСскоС исслСдованиС статистичСских характСристик миографичСской ΠΏΠΎΠΌΠ΅Ρ…ΠΈ, Π²Ρ‹Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ ΠΈΠ· Π·Π°ΡˆΡƒΠΌΠ»Π΅Π½Π½Ρ‹Ρ… Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² элСктрокардиосигнала. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ ΠΌΠ΅Ρ‚ΠΎΠ΄ выдСлСния миографичСской ΠΏΠΎΠΌΠ΅Ρ…ΠΈ ΠΈΠ· записСй элСктрокардиосигнала. ΠœΠ΅Ρ‚ΠΎΠ΄ основан Π½Π° полиномиальной аппроксимации Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² элСктрокардиосигнала Π² ΡΠΊΠΎΠ»ΡŒΠ·ΡΡ‰Π΅ΠΌ ΠΎΠΊΠ½Π΅ с ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ вСсовым усрСднСниСм ΠΏΠ΅Ρ€Π΅ΠΊΡ€Ρ‹Π²Π°ΡŽΡ‰ΠΈΡ…ΡΡ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ². Π‘ использованиСм Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΈΠ· ΠΌΠ½ΠΎΠ³ΠΎΠΊΠ°Π½Π°Π»ΡŒΠ½Ρ‹Ρ… записСй элСктрокардиосигнала Π±Ρ‹Π»ΠΈ Π²Ρ‹Π΄Π΅Π»Π΅Π½Ρ‹ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Ρ‹ миографичСской ΠΏΠΎΠΌΠ΅Ρ…ΠΈ. На основС Π²Ρ‹Π΄Π΅Π»Π΅Π½Π½Ρ‹Ρ… Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΏΠΎΠ΄ΠΎΠ±Ρ€Π°Π½ΠΎ совмСстноС распрСдСлСниС отсчСтов миографичСской ΠΏΠΎΠΌΠ΅Ρ…ΠΈ Π² Π΄Π²ΡƒΡ… смСТных отвСдСниях, Π° Ρ‚Π°ΠΊΠΆΠ΅ исслСдованы коррСляционныС взаимосвязи ΠΌΠ΅ΠΆΠ΄Ρƒ отсчСтами миографичСской ΠΏΠΎΠΌΠ΅Ρ…ΠΈ Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… отвСдСниях элСктрокардиосигнала. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ установлСно, Ρ‡Ρ‚ΠΎ совмСстноС распрСдСлСниС отсчСтов миографичСской ΠΏΠΎΠΌΠ΅Ρ…ΠΈ Π² Π΄Π²ΡƒΡ… смСТных отвСдСниях Π² ΠΏΠ΅Ρ€Π²ΠΎΠΌ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ описано с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π΄Π²ΡƒΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π·Π°ΠΊΠΎΠ½Π°. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, ΠΌΠ΅ΠΆΠ΄Ρƒ отсчСтами миографичСской ΠΏΠΎΠΌΠ΅Ρ…ΠΈ ΠΈΠ· Π΄Π²ΡƒΡ… смСТных ΠΎΡ‚Π²Π΅Π΄Π΅Π½ΠΈΠΉ ΠΌΠΎΠ³ΡƒΡ‚ Π½Π°Π±Π»ΡŽΠ΄Π°Ρ‚ΡŒΡΡ довольно ΡΠΈΠ»ΡŒΠ½Ρ‹Π΅ коррСляционныС взаимосвязи

    EVALUATION OF ELECTROMYOGRAPHIC NOISE STATISTICAL CHARACTERISTICS IN MULTICHANNEL ECG RECORDINGS

    Get PDF
    Electromyographic noise is one of the most common noises in electrocardiogram. In case of several electrocardiogram leads, electromyographic noise affects each lead to different extent. It can be taken into account when developing algorithms for multilead electrocardiogram record processing. However, in the existing literature, there is no information about the relationship of electromyographic noise in various ECG leads and their joint probability distribution. The purpose of this paper is to study statistical characteristics of electromyographic noise in ECG signal, from which the electromyographic noise is extracted. The paper proposes a method for extracting electromyographic noise from electrocardiogram signal, based on a polynomial approximation of electrocardiogram signal fragments in sliding window with overlapping fragment subsequent weight averaging. Using this method, fragments of electromyographic noise are extracted from multichannel electrocardiogram records. Based on the obtained data, a joint probability distribution function of electromyographic noise in two adjacent leads is selected, and the correlation relationships between the electromyographic noise in various ECG leads are investigated. The results show that the joint probability distribution function of electromyographic noise in two adjacent leads in the first approximation can be described using bivariate normal distribution. In addition, between the samples of electromyographic noise from two adjacent leads quite strong correlation relationships can be observed

    Inhibition of JAK1,2 Prevents Fibrotic Remodeling of Pulmonary Vascular Bed and Improves Outcomes in the Rat Model of Chronic Thromboembolic Pulmonary Hypertension

    No full text
    Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare complication of acute pulmonary embolism with poor clinical outcomes. Therapeutic approaches to prevention of fibrotic remodeling of the pulmonary vascular bed in CTEPH are limited. In this work, we tested the hypothesis that Janus kinase 1/2 (JAK1/2) inhibition with ruxolitinib might prevent and attenuate CTEPH in a rat model. CTEPH was induced by repeated embolization of the pulmonary artery with partially biodegradable 180 Β± 30 ΞΌm alginate microspheres. Two weeks after the last injection of microspheres, ruxolitinib was administered orally at doses of 0.86, 2.58, and 4.28 mg/kg per day for 4 weeks. Prednisolone (1.475 mg/kg, i.m.) was used as a reference drug. Ruxolitinib in all doses as well as prednisolone reduced pulmonary vascular wall hypertrophy. Ruxolitinib at a dose of 2.58 mg/kg and prednisolone reduced vascular wall fibrosis. Prednisolone treatment resulted in decreased right ventricular systolic pressure. Pulmonary vascular resistance was lower in the prednisolone and ruxolitinib (4.28 mg/kg) groups in comparison with the placebo group. The plasma level of brain natriuretic peptide was lower in groups receiving ruxolitinib at doses of 2.58 and 4.28 mg/kg versus placebo. This study demonstrated that JAK1/2 inhibitor ruxolitinib dose-dependently reduced pulmonary vascular remodeling, thereby preventing CTEPH formation in rats
    corecore