2,882 research outputs found

    Genetic relationships between chondrules, rims and matrix.

    No full text
    Published versio

    Relation between ambient air pollution and low birth weight in the Northeastern United States.

    Get PDF
    We evaluated the relation between term low birth weight (LBW) and ambient air levels of carbon monoxide (CO), particulate matter up to 10 microm in diameter (PM(10)), and sulfur dioxide (SO(2)). The study population consisted of singleton, term live births (37-44 weeks of gestation) born between 1 January 1994 and 31 December 1996 in six northeastern cities of the United States: Boston, Massachusetts; Hartford, Connecticut; Philadelphia, Pennsylvania; Pittsburgh, Pennsylvania; Springfield, Massachusetts; and Washington, DC. Birth data were obtained from National Center for Health Statistics Natality Data Sets. Infants with a birth weight < 2,500 g were classified as LBW. Air monitoring data obtained from the U.S. Environmental Protection Agency were used to estimate average trimester exposures to ambient CO, PM(10), and SO(2). Our results suggest that exposures to ambient CO and SO(2) increase the risk for term LBW. This risk increased by a unit increase in CO third trimester average concentration [adjusted odds ratio (AOR) 1.31; 95% confidence interval (CI) 1.06,1.62]. Infants with SO(2) second trimester exposures falling within the 25 and < 50th (AOR 1.21; CI 1.07,1.37), the 50 to < 75th (AOR 1.20; CI 1.08,1.35), and the 75 to < 95th (AOR 1.21; CI 1.03,1.43) percentiles were also at increased risk for term LBW when compared to those in the reference category (< 25th percentile). There was no indication of a positive association between prenatal exposures to PM(10) and term LBW. Increased ambient levels of air pollution may be associated with an increased risk for LBW

    Interference suppression techniques for OPM-based MEG: Opportunities and challenges

    Get PDF
    One of the primary technical challenges facing magnetoencephalography (MEG) is that the magnitude of neuromagnetic fields is several orders of magnitude lower than interfering signals. Recently, a new type of sensor has been developed ā€“ the optically pumped magnetometer (OPM). These sensors can be placed directly on the scalp and move with the head during participant movement, making them wearable. This opens up a range of exciting experimental and clinical opportunities for OPM-based MEG experiments, including paediatric studies, and the incorporation of naturalistic movements into neuroimaging paradigms. However, OPMs face some unique challenges in terms of interference suppression, especially in situations involving mobile participants, and when OPMs are integrated with electrical equipment required for naturalistic paradigms, such as motion capture systems. Here we briefly review various hardware solutions for OPM interference suppression. We then outline several signal processing strategies aimed at increasing the signal from neuromagnetic sources. These include regression-based strategies, temporal filtering and spatial filtering approaches. The focus is on the practical application of these signal processing algorithms to OPM data. In a similar vein, we include two worked-through experiments using OPM data collected from a whole-head sensor array. These tutorial-style examples illustrate how the steps for suppressing external interference can be implemented, including the associated data and code so that researchers can try the pipelines for themselves. With the popularity of OPM-based MEG rising, there will be an increasing need to deal with interference suppression. We hope this practical paper provides a resource for OPM-based MEG researchers to build upon

    Using OPMs to measure neural activity in standing, mobile participants

    Get PDF
    Optically pumped magnetometer-based magnetoencephalography (OP-MEG) can be used to measure neuromagnetic fields while participants move in a magnetically shielded room. Head movements in previous OP-MEG studies have been up to 20Ā cm translation and āˆ¼30Ā° rotation in a sitting position. While this represents a step-change over stationary MEG systems, naturalistic head movement is likely to exceed these limits, particularly when participants are standing up. In this proof-of-concept study, we sought to push the movement limits of OP-MEG even further. Using a 90 channel (45-sensor) whole-head OP-MEG system and concurrent motion capture, we recorded auditory evoked fields while participants were: (i) sitting still, (ii) standing up and still, and (iii) standing up and making large natural head movements continuously throughout the recording - maximum translation 120Ā cm, maximum rotation 198Ā°. Following pre-processing, movement artefacts were substantially reduced but not eliminated. However, upon utilisation of a beamformer, the M100 event-related field localised to primary auditory regions. Furthermore, the event-related fields from auditory cortex were remarkably consistent across the three conditions. These results suggest that a wide range of movement is possible with current OP-MEG systems. This in turn underscores the exciting potential of OP-MEG for recording neural activity during naturalistic paradigms that involve movement (e.g. navigation), and for scanning populations who are difficult to study with stationary MEG (e.g. young children)

    Modelling optically pumped magnetometer interference in MEG as a spatially homogeneous magnetic field

    Get PDF
    Here we propose that much of the magnetic interference observed when using optically pumped magnetometers for MEG experiments can be modeled as a spatially homogeneous magnetic field. We show that this approximation reduces sensor level variance and substantially improves statistical power. This model does not require knowledge of the underlying neuroanatomy nor the sensor positions. It only needs information about the sensor orientation. Due to the model's low rank there is little risk of removing substantial neural signal. However, we provide a framework to assess this risk for any sensor number, design or subject neuroanatomy. We find that the risk of unintentionally removing neural signal is reduced when multi-axis recordings are performed. We validated the method using a binaural auditory evoked response paradigm and demonstrated that removing the homogeneous magnetic field increases sensor level SNR by a factor of 3. Considering the model's simplicity and efficacy, we suggest that this homogeneous field correction can be a powerful preprocessing step for arrays of optically pumped magnetometers

    Inadequate prenatal care and its association with adverse pregnancy outcomes: A comparison of indices

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objectives of this study were to determine rates of prenatal care utilization in Winnipeg, Manitoba, Canada from 1991 to 2000; to compare two indices of prenatal care utilization in identifying the proportion of the population receiving inadequate prenatal care; to determine the association between inadequate prenatal care and adverse pregnancy outcomes (preterm birth, low birth weight [LBW], and small-for-gestational age [SGA]), using each of the indices; and, to assess whether or not, and to what extent, gestational age modifies this association.</p> <p>Methods</p> <p>We conducted a population-based study of women having a hospital-based singleton live birth from 1991 to 2000 (N = 80,989). Data sources consisted of a linked mother-baby database and a physician claims file maintained by Manitoba Health. Rates of inadequate prenatal care were calculated using two indices, the R-GINDEX and the APNCU. Logistic regression analysis was used to determine the association between inadequate prenatal care and adverse pregnancy outcomes. Stratified analysis was then used to determine whether the association between inadequate prenatal care and LBW or SGA differed by gestational age.</p> <p>Results</p> <p>Rates of inadequate/no prenatal care ranged from 8.3% using APNCU to 8.9% using R-GINDEX. The association between inadequate prenatal care and preterm birth and LBW varied depending on the index used, with adjusted odds ratios (AOR) ranging from 1.0 to 1.3. In contrast, both indices revealed the same strength of association of inadequate prenatal care with SGA (AOR 1.4). Both indices demonstrated heterogeneity (non-uniformity) across gestational age strata, indicating the presence of effect modification by gestational age.</p> <p>Conclusion</p> <p>Selection of a prenatal care utilization index requires careful consideration of its methodological underpinnings and limitations. The two indices compared in this study revealed different patterns of utilization of prenatal care, and should not be used interchangeably. Use of these indices to study the association between utilization of prenatal care and pregnancy outcomes affected by the duration of pregnancy should be approached cautiously.</p

    Three-dimensional simulation for fast forward flight of a calliope hummingbird

    Get PDF
    We present a computational study of flapping-wing aerodynamics of a calliope hummingbird (Selasphorus calliope) during fast forward flight. Three-dimensional wing kinematics were incorporated into the model by extracting time-dependent wing position from high-speed videos of the bird flying in a wind tunnel at 8.3ā€‰mā€‰sāˆ’1. The advance ratio, i.e. the ratio between flight speed and average wingtip speed, is around one. An immersed-boundary method was used to simulate flow around the wings and bird body. The result shows that both downstroke and upstroke in a wingbeat cycle produce significant thrust for the bird to overcome drag on the body, and such thrust production comes at price of negative lift induced during upstroke. This feature might be shared with bats, while being distinct from insects and other birds, including closely related swifts
    • ā€¦
    corecore