56,389 research outputs found
Electron-Positron colliders
An electron-positron linear collider in the energy range between 500 and 1000
GeV is of crucial importance to precisely test the Standard Model and to
explore the physics beyond it. The physics program is complementary to that of
the Large Hadron Collider. Some of the main physics goals and the expected
accuracies of the anticipated measurements at such a linear collider are
discussed. A short review of the different collider designs presently under
study is given including possible upgrade paths to the multi-TeV region.
Finally a framework is presented within which the realisation of such a project
could be achieved as a global international project.Comment: 14 pages, 16 figures, Proceedings of the XX International Symposium
on Lepton and Photon Interactions at High Energies, Rome, Italy, 23-28 July,
200
Studies of low-mass star formation with the large deployable reflector
Estimates are made of the far-infrared and submillimeter continuum and line emission from regions of low mass star formation. The intensity of this emission is compared with the sensitivity of the large deployable reflector (LDR), a large space telescope designed for this wavelength range. The proposed LDR is designed to probe the temperature, density, chemical structure, and the velocity field of the collapsing envelopes of these protostars. The LDR is also designed to study the accretion shocks on the cores and circumstellar disks of low-mass protostars, and to detect shock waves driven by protostellar winds
Infrared emission associated with chemical reactions on Shuttle and SIRTF surfaces
The infrared intensities which would be observed by the Shuttle Infrared Telescope Facility (SIRTF), and which are produced by surface chemistry following atmospheric impact on SIRTF and the shuttle are estimated. Three possible sources of reactants are analyzed: (1) direct atmospheric and scattered contaminant fluxes onto the shuttle's surface; (2) direct atmospheric and scattered contaminant fluxes onto the SIRTF sunshade; and (3) scattered fluxes onto the cold SIRTF mirror. The chemical reactions are primarily initiated by the dominent flux of reactive atomic oxygen on the surfaces. Using observations of the optical glow to constrain theoretical parameters, it is estimated for source (1) that the infrared glow on the SIRTF mirror will be comparable to the zodiacal background between 1 and 10 micron wavelengths. It is speculated that oxygen reacts with the atoms and the radicals bound in the organic molecules that reside on the shuttle and the Explorer surfaces. It is concluded that for source (2) that with suitable construction, a warm sunshade will produce insignificant infrared glow. It is noted that the atomic oxygen flux on the cold SIRTF mirror (3) is insufficient to produce significant infrared glow. Infrared absorption by the ice buildup on the mirror is also small
Stabilization of Hypersonic Boundary Layers by Porous Coatings
A second-mode stability analysis has been performed for a hypersonic boundary layer on a wall covered by a porous coating with equally spaced cylindrical blind microholes. Massive reduction of the second mode amplification is found to be due to the disturbance energy absorption by the porous layer. This stabilization effect was demonstrated by experiments recently conducted on a sharp cone in the T-5 high-enthalpy wind tunnel of the Graduate Aeronautical Laboratories of the California Institute of Technology. Their experimental confirmation of the theoretical predictions underscores the possibility that ultrasonically absorptive porous coatings may be exploited for passive laminar flow control on hypersonic vehicle surfaces
Dynamo Effects Near The Transition from Solar to Anti-Solar Differential Rotation
Numerical MHD simulations play increasingly important role for understanding
mechanisms of stellar magnetism. We present simulations of convection and
dynamos in density-stratified rotating spherical fluid shells. We employ a new
3D simulation code for the solution of a physically consistent anelastic model
of the process with a minimum number of parameters. The reported dynamo
simulations extend into a "buoyancy-dominated" regime where the buoyancy
forcing is dominant while the Coriolis force is no longer balanced by pressure
gradients and strong anti-solar differential rotation develops as a result. We
find that the self-generated magnetic fields, despite being relatively weak,
are able to reverse the direction of differential rotation from anti-solar to
solar-like. We also find that convection flows in this regime are significantly
stronger in the polar regions than in the equatorial region, leading to
non-oscillatory dipole-dominated dynamo solutions, and to concentration of
magnetic field in the polar regions. We observe that convection has different
morphology in the inner and at the outer part of the convection zone
simultaneously such that organized geostrophic convection columns are hidden
below a near-surface layer of well-mixed highly-chaotic convection. While we
focus the attention on the buoyancy-dominated regime, we also demonstrate that
conical differential rotation profiles and persistent regular dynamo
oscillations can be obtained in the parameter space of the rotation-dominated
regime even within this minimal model.Comment: Published in the Astrophysical Journa
Efficiency of radial transport of ices in protoplanetary disks probed with infrared observations: the case of CO
The efficiency of radial transport of icy solid material from outer disk to
the inner disk is currently unconstrained. Efficient radial transport of icy
dust grains could significantly alter the composition of the gas in the inner
disk. Our aim is to model the gaseous CO abundance in the inner disk and
use this to probe the efficiency of icy dust transport in a viscous disk.
Features in the simulated CO spectra are investigated for their dust flux
tracing potential. We have developed a 1D viscous disk model that includes gas
and grain motions as well as dust growth, sublimation and freeze-out and a
parametrisation of the CO chemistry. The thermo-chemical code DALI was used
to model the mid-infrared spectrum of CO, as can be observed with
JWST-MIRI. CO ice sublimating at the iceline increases the gaseous CO
abundance to levels equal to the CO ice abundance of , which
is three orders of magnitude more than the gaseous CO abundances of observed by Spitzer. Grain growth and radial drift further increase
the gaseous CO abundance. A CO destruction rate of at least
s is needed to reconcile model prediction with observations. This rate
is at least two orders of magnitude higher than the fastest known chemical
destruction rate. A range of potential physical mechanisms to explain the low
observed CO abundances are discussed. Transport processes in disks can have
profound effects on the abundances of species in the inner disk. The
discrepancy between our model and observations either suggests frequent shocks
in the inner 10 AU that destroy CO, or that the abundant midplane CO is
hidden from our view by an optically thick column of low abundance CO in to
the disk surface XDR/PDR. Other molecules, such as CH or NH, can give
further handles on the rate of mass transport.Comment: Accepted for publication in A&A, 18 pages, 13 figures, abstract
abridge
- …