6 research outputs found

    Perceived Barriers and Trends in HPV Vaccination Among Young Men in Newtown, CT

    Get PDF
    Human Papillomavirus (HPV) is the most prevalent sexually transmitted infection in the United States. Although the HPV vaccine has been proven to be effective and safe, the vaccination rates are significantly less compared to other vaccines. In males, HPV infection may lead to the development of numerous forms of cancer including oropharyngeal, anal and penile cancer, however, the HPV vaccination rate for males is significantly less than it is for females. This project aims to highlight various medical providers\u27 opinions on the barriers to HPV vaccination for young men in Newtown, Connecticut, as well as, address methods for improvement including a brochure that was made and distributed to patients and medical providers in the clinic.https://scholarworks.uvm.edu/fmclerk/1592/thumbnail.jp

    Investigating the DNA-Binding Site for VirB, a Key Transcriptional Regulator of Shigella Virulence Genes, Using an In Vivo Binding Tool

    Get PDF
    The transcriptional anti-silencing and DNA-binding protein, VirB, is essential for the virulence of Shigella species and, yet, sequences required for VirB-DNA binding are poorly understood. While a 7-8 bp VirB-binding site has been proposed, it was derived from studies at a single VirB-dependent promoter, icsB. Our previous in vivo studies at a different VirB-dependent promoter, icsP, found that the proposed VirB-binding site was insufficient for regulation. Instead, the required site was found to be organized as a near-perfect inverted repeat separated by a single nucleotide spacer. Thus, the proposed 7-8 bp VirB-binding site needed to be re-evaluated. Here, we engineer and validate a molecular tool to capture protein-DNA binding interactions in vivo. Our data show that a sequence organized as a near-perfect inverted repeat is required for VirB-DNA binding interactions in vivo at both the icsB and icsP promoters. Furthermore, the previously proposed VirB-binding site and multiple sites found as a result of its description (i.e., sites located at the virB, virF, spa15, and virA promoters) are not sufficient for VirB to bind in vivo using this tool. The implications of these findings are discussed

    Feasibility of fine needle aspiration for diagnosis of b-cell lymphoma of the thyroid: a case series and review of the literature

    No full text
    Abstract Background Primary thyroid lymphoma (PTL) is a rare cancer accounting for approximately 5% of thyroid malignancies. Historically, incisional biopsy has been the gold standard for definitive diagnosis of PTL, however, the use of cell block as an adjunct to fine needle aspiration (FNA) provides a high sensitivity and specificity for diagnosis and classification. Methods Three patients presented with a symptomatic enlarging thyroid mass. Patient 1 underwent incisional biopsy under general anesthesia, Patient 2 underwent core needle biopsy to avoid high risk intubation, and Patient 3 underwent fine needle aspiration alone with the use of cell block. Results All patients were diagnosed with a fully classified non-Hodgkin’s lymphoma using immunohistochemistry, flow cytometry, and fluorescence in situ hybridization (FISH) analysis. Conclusions FNA for diagnosis of some subtypes of PTL is feasible and preferred in cases that are particularly high risk for general anesthesia. This minimally invasive technique is safe and cost effective as it avoids expenses associated with operative intervention

    Curated multiple sequence alignment for the Adenomatous Polyposis Coli (APC) gene and accuracy of in silico pathogenicity predictions.

    No full text
    Computational algorithms are often used to assess pathogenicity of Variants of Uncertain Significance (VUS) that are found in disease-associated genes. Most computational methods include analysis of protein multiple sequence alignments (PMSA), assessing interspecies variation. Careful validation of PMSA-based methods has been done for relatively few genes, partially because creation of curated PMSAs is labor-intensive. We assessed how PMSA-based computational tools predict the effects of the missense changes in the APC gene, in which pathogenic variants cause Familial Adenomatous Polyposis. Most Pathogenic or Likely Pathogenic APC variants are protein-truncating changes. However, public databases now contain thousands of variants reported as missense. We created a curated APC PMSA that contained >3 substitutions/site, which is large enough for statistically robust in silico analysis. The creation of the PMSA was not easily automated, requiring significant querying and computational analysis of protein and genome sequences. Of 1924 missense APC variants in the NCBI ClinVar database, 1800 (93.5%) are reported as VUS. All but two missense variants listed as P/LP occur at canonical splice or Exonic Splice Enhancer sites. Pathogenicity predictions by five computational tools (Align-GVGD, SIFT, PolyPhen2, MAPP, REVEL) differed widely in their predictions of Pathogenic/Likely Pathogenic (range 17.5-75.0%) and Benign/Likely Benign (range 25.0-82.5%) for APC missense variants in ClinVar. When applied to 21 missense variants reported in ClinVar and securely classified as Benign, the five methods ranged in accuracy from 76.2-100%. Computational PMSA-based methods can be an excellent classifier for variants of some hereditary cancer genes. However, there may be characteristics of the APC gene and protein that confound the results of in silico algorithms. A systematic study of these features could greatly improve the automation of alignment-based techniques and the use of predictive algorithms in hereditary cancer genes
    corecore