3 research outputs found

    Intermittent Hypoxic-Hyperoxic Exposures Effects in Patients with Metabolic Syndrome: Correction of Cardiovascular and Metabolic Profile

    No full text
    The aim of this study was to evaluate efficacy and applicability of the “intermittent hypoxic-hyperoxic exposures at rest” (IHHE) protocol as an adjuvant method for metabolic syndrome (MS) cardiometabolic components. A prospective, single-center, randomized controlled clinical study was conducted on 65 patients with MS subject to optimal pharmacotherapy, who were randomly allocated to IHHE or control (CON) groups. The IHHE group completed a 3-week, 5 days/week program of IHHE, each treatment session lasting for 45 min. The CON group followed the same protocol, but was breathing room air through a facial mask instead. The data were collected 2 days before, and at day 2 after the 3-week intervention. As the primary endpoints, systolic (SBP) and diastolic (DBP) blood pressure at rest, as well as arterial stiffness and hepatic tissue elasticity parameters, were selected. After the trial, the IHHE group had a significant decrease in SBP and DBP (Cohen’s d = 1.15 and 0.7, p &lt; 0.001), which became significantly lower (p &lt; 0.001) than in CON. We have failed to detect any pre-post IHHE changes in the arterial stiffness parameters (judging by the Cohen’s d), but after the intervention, cardio-ankle vascular indexes (RCAVI and LCAVI) were significantly lowered in the IHHE group as compared with the CON. The IHHE group demonstrated a medium effect (0.68; 0.69 and 0.71 Cohen’s d) in pre-post decrease of Total Cholesterol (p = 0.04), LDL (p = 0.03), and Liver Steatosis (p = 0.025). In addition, the IHHE group patients demonstrated a statistically significant decrease in pre-post differences (deltas) of RCAVI, LCAVI, all antropometric indices, NTproBNP, Liver Fibrosis, and Steatosis indices, TC, LDL, ALT, and AST in comparison with CON (p = 0.001). The pre-post shifts in SBP, DBP, and HR were significantly correlated with the reduction degree in arterial stiffness (ΔRCAVI, ΔLCAVI), liver fibrosis and steatosis severity (ΔLFibr, ΔLS), anthropometric parameters, liver enzymes, and lipid metabolism in the IHHE group only. Our results suggested that IHHE is a safe, well-tolerated intervention which could be an effective adjuvant therapy in treatment and secondary prevention of atherosclerosis, obesity, and other components of MS that improve the arterial stiffness lipid profile and liver functional state in MS patients.</jats:p

    The Effects of Intermittent Hypoxic–Hyperoxic Exposures on Lipid Profile and Inflammation in Patients With Metabolic Syndrome

    No full text
    Background: Patients with metabolic syndrome (MS) tend to suffer from comorbidities, and are often simultaneously affected by obesity, dysglycemia, hypertension, and dyslipidemia. This syndrome can be reversed if it is timely diagnosed and treated with a combination of risk factors-reducing lifestyle changes and a tailored pharmacological plan. Interval hypoxic-hyperoxic training (IHHT) has been shown as an effective program in reducing cardiovascular risk factors in patients with MS even in the absence of exercise. However, the influence of IHHT on the lipid profile and inflammation in this clinical population remains relatively unknown.Methods: A prospective, single-center, randomized controlled trial was conducted on 65 (33 men) patients with MS aged 29–74 years, who were randomly allocated to the IHHT or control (sham) experimental groups. The IHHT group completed a 3-week, 5 days/week intermittent exposure to hypoxia and hyperoxia. The control (sham) group followed the same protocol but was breathing room air instead. The primary endpoints were the lipid profile (concentrations of total cholesterol [TC], low-density lipoprotein [LDL], high-density lipoprotein [HDL], and triglycerides [TG]) and the inflammatory factors such as high-sensitivity C-reactive protein (hs-CRP), galectin-3, heat shock proteins (Hsp70). The secondary endpoints were alanine aminotransferase (ALT), aspartate aminotransferase (AST), N-terminal pro-hormone of brain natriuretic peptide level (NTproBNP), transforming growth factor beta-1 (TGF-beta1), heart-type fatty acid-binding protein (H-FABP), and nitric oxide synthase 2 (NOS2).Results: There were no differences between the two groups but the different baseline values have affected these results. The IHHT group demonstrated pre-post decrease in total cholesterol (p = 0.001), LDL (p = 0.001), and TG levels (p = 0.001). We have also found a decrease in the CRP-hs (p = 0.015) and Hsp70 (p = 0.006) in IHHT-group after intervention, and a significant decrease in pre-post (delta) differences of NTproBNP (p &amp;lt; 0.0001) in the IHHT group compared to the control group. In addition, the patients of the IHHT group showed a statistically significant decrease in pre-post differences of ALT and AST levels in comparison with the control group (p = 0.001). No significant IHHT complications or serious adverse events were observed.Conclusions: The IHHT appears to improve lipid profile and anti-inflammatory status. It is a safe, well-tolerated procedure, and could be recommended as an auxiliary treatment in patients suffering from MS, however, the experiment results were limited by the baseline group differences.Clinical Trial Registration:ClinicalTrials.gov, identifier [NCT04791397]. Evaluation of the effect of IHHT on vascular stiffness and elasticity of the liver tissue in patients with MS.</jats:p

    Impact of Hypoxia&ndash;Hyperoxia Exposures on Cardiometabolic Risk Factors and TMAO Levels in Patients with Metabolic Syndrome

    No full text
    Along with the known risk factors of cardiovascular diseases (CVDs) constituting metabolic syndrome (MS), the gut microbiome and some of its metabolites, in particular trimethylamine-N-oxide (TMAO), are actively discussed. A prolonged stay under natural hypoxic conditions significantly and multi-directionally changes the ratio of gut microbiome strains and their metabolites in feces and blood, which is the basis for using hypoxia preconditioning for targeted effects on potential risk factors of CVD. A prospective randomized study included 65 patients (32 females) with MS and optimal medical therapy. Thirty-three patients underwent a course of 15 intermittent hypoxic&ndash;hyperoxic exposures (IHHE group). The other 32 patients underwent sham procedures (placebo group). Before and after the IHHE course, patients underwent liver elastometry, biochemical blood tests, and blood and fecal sampling for TMAO analysis (tandem mass spectrometry). No significant dynamics of TMAO were detected in both the IHHE and sham groups. In the subgroup of IHHE patients with baseline TMAO values above the reference (TMAO &ge; 5 &mu;mol/l), there was a significant reduction in TMAO plasma levels. But the degree of reduction in total cholesterol (TCh), low-density lipoprotein (LDL), and regression of liver steatosis index was more pronounced in patients with initially normal TMAO values. Despite significant interindividual variations, in the subgroup of IHHE patients with MS and high baseline TMAO values, there were more significant reductions in cardiometabolic and hepatic indicators of MS than in controls. More research is needed to objectify the prognostic role of TMAO and the possibilities of its correction using hypoxia adaptation techniques
    corecore