4 research outputs found

    GPU.proton.DOCK: Genuine Protein Ultrafast proton equilibria consistent DOCKing

    Get PDF
    GPU.proton.DOCK (Genuine Protein Ultrafast proton equilibria consistent DOCKing) is a state of the art service for in silico prediction of protein–protein interactions via rigorous and ultrafast docking code. It is unique in providing stringent account of electrostatic interactions self-consistency and proton equilibria mutual effects of docking partners. GPU.proton.DOCK is the first server offering such a crucial supplement to protein docking algorithms—a step toward more reliable and high accuracy docking results. The code (especially the Fast Fourier Transform bottleneck and electrostatic fields computation) is parallelized to run on a GPU supercomputer. The high performance will be of use for large-scale structural bioinformatics and systems biology projects, thus bridging physics of the interactions with analysis of molecular networks. We propose workflows for exploring in silico charge mutagenesis effects. Special emphasis is given to the interface-intuitive and user-friendly. The input is comprised of the atomic coordinate files in PDB format. The advanced user is provided with a special input section for addition of non-polypeptide charges, extra ionogenic groups with intrinsic pKa values or fixed ions. The output is comprised of docked complexes in PDB format as well as interactive visualization in a molecular viewer. GPU.proton.DOCK server can be accessed at http://gpudock.orgchm.bas.bg/

    PHEMTO: protein pH-dependent electric moment tools

    Get PDF
    PHEMTO (protein pH-dependent electric moment tools) is released in response to the high demand in protein science community for evaluation of electrostatic characteristics in relations to molecular recognition. PHEMTO will serve protein scientists with new advanced features for analysis of protein molecular interactions: Electric/dipole moments, their pH-dependence and in silico charge mutagenesis effects on these properties as well as alternative algorithms for electric/dipole moment computation—Singular value decomposition of electrostatic potential (EP) to account for reaction field. The implementation is based on long-term experience—PHEI mean field electrostatics and PHEPS server for evaluation of global and local pH-dependent properties. However, PHEMTO is not just an update of our PHEPS server. Besides standard electrostatics, we offer new, advanced and useful features for analysis of protein molecular interactions. In addition our algorithms are very fast. Special emphasis is given to the interface—intuitive and user-friendly. The input is comprised of the atomic coordinate file in Protein Data Bank format. The advanced user is provided with a special input section for addition of non-polypeptide charges. The output covers actually full electrostatic characteristics but special emphasis is given to electric/dipole moments and their interactive visualization. PHEMTO server can be accessed at http://phemto.orgchm.bas.bg/
    corecore