65 research outputs found
Early Life Relict Feature in Peptide Mass Distribution
Molecular mass of a biomolecule is characterized in mass spectroscopy by the monoisitopic mass M~mono~ and the average isotopic mass M~av~. We found that peptide masses mapped on a plane made by two parameters derived from M~mono~ and M~av~ form a peculiar global feature in form of a band-gap 5-7 ppm wide stretching across the whole peptide galaxy, with a narrow (FWHM 0.2 ppm) line in the centre. The a priori probability of such a feature to emerge by chance is less than 1:100. Peptides contributing to the central line have elemental compositions following the rules S=0; Z = (2C - N - H)/2 =0, which nine out of 20 amino acid residues satisfy. The relative abundances of amino acids in the peptides contributing to the central line correlate with the consensus order of emergence of these amino acids, with ancient amino acids being overrepresented in on-line peptides. Thus the central line is a relic of ancient life, and likely a signature of its emergence in abiotic synthesis. The linear correlation between M~av~ and M~mono~ reduces the complexity of polypeptide molecules, which may have increased the rate of their abiotic production. This, in turn may have influenced the selection of these amino acid residues for terrestrial life. Assuming the line feature is not spurious, life has emerged from elements with isotopic abundances very close to terrestrial levels, which rules out most of the Galaxy
Hydrodynamic Modes in a Trapped Strongly Interacting Fermi Gases of Atoms
The zero-temperature properties of a dilute two-component Fermi gas in the
BCS-BEC crossover are investigated. On the basis of a generalization of the
variational Schwinger method, we construct approximate semi-analytical formulae
for collective frequencies of the radial and the axial breathing modes of the
Fermi gas under harmonic confinement in the framework of the hydrodynamic
theory. It is shown that the method gives nearly exact solutions.Comment: 11 page
Collective Excitations of Strongly Interacting Fermi Gases of Atoms in a Harmonic Trap
The zero-temperature properties of a dilute two-component Fermi gas in the
BCS-BEC crossover are investigated. On the basis of a generalization of the
Hylleraas-Undheim method, we construct rigorous upper bounds to the collective
frequencies for the radial and the axial breathing mode of the Fermi gas under
harmonic confinement in the framework of the hydrodynamic theory. The bounds
are compared to experimental data for trapped vapors of Li6 atoms.Comment: 11 pages, 2 figure
Time-Dependent Density-Functional Theory for Trapped Strongly-Interacting Fermionic Atoms
The dynamics of strongly interacting trapped dilute Fermi gases (dilute in
the sense that the range of interatomic potential is small compared with
inter-particle spacing) is investigated in a single-equation approach to the
time-dependent density-functional theory. Our results are in good agreement
with recent experimental data in the BCS-BEC crossover regime. It is also shown
that the calculated corrections to the hydrodynamic approximation may be
important even for systems with a rather large number of atoms.Comment: Resubmitted to PRA in response to referee's comments. Abstract is
changed. Added new figure
Site-site memory equation approach in study of density/pressure dependence of translational diffusion coefficient and rotational relaxation time of polar molecular solutions: acetonitrile in water, methanol in water, and methanol in acetonitrile
We present results of theoretical study and numerical calculation of the
dynamics of molecular liquids based on combination of the memory equation
formalism and the reference interaction site model - RISM. Memory equations for
the site-site intermediate scattering functions are studied in the
mode-coupling approximation for the first order memory kernels, while
equilibrium properties such as site-site static structure factors are deduced
from RISM. The results include the temperature-density(pressure) dependence of
translational diffusion coefficients D and orientational relaxation times t for
acetonitrile in water, methanol in water and methanol in acetonitrile, all in
the limit of infinite dilution. Calculations are performed over the range of
temperatures and densities employing the SPC/E model for water and optimized
site-site potentials for acetonitrile and methanol. The theory is able to
reproduce qualitatively all main features of temperature and density
dependences of D and t observed in real and computer experiments. In
particular, anomalous behavior, i.e. the increase in mobility with density, is
observed for D and t of methanol in water, while acetonitrile in water and
methanol in acetonitrile do not show deviations from the ordinary behavior. The
variety exhibited by the different solute-solvent systems in the density
dependence of the mobility is interpreted in terms of the two competing origins
of friction, which interplay with each other as density increases: the
collisional and dielectric frictions which, respectively, increase and decrease
with increasing density.Comment: 13 pages, 8 eps-figures, 3 tables, RevTeX4-forma
Ground-State of Charged Bosons Confined in a Harmonic Trap
We study a system composed of N identical charged bosons confined in a
harmonic trap. Upper and lower energy bounds are given. It is shown in the
large N limit that the ground-state energy is determined within an accuracy of
and that the mean field theory provides a reasonable result with
relative error of less than 16% for the binding energy .Comment: 15 page
The Hilbert-Schmidt Theorem Formulation of the R-Matrix Theory
Using the Hilbert-Schmidt theorem, we reformulate the R-matrix theory in
terms of a uniformly and absolutely convergent expansion. Term by term
differentiation is possible with this expansion in the neighborhood of the
surface. Methods for improving the convergence are discussed when the
R-function series is truncated for practical applications.Comment: 16 pages, Late
Some aspects of the -adic analysis and its applications to -adic stochastic processes
In this paper we consider a generalization of analysis on -adic numbers
field to the case of -adic numbers ring. The basic statements, theorems
and formulas of -adic analysis can be used for the case of -adic analysis
without changing. We discuss basic properties of -adic numbers and consider
some properties of -adic integration and -adic Fourier analysis. The
class of infinitely divisible -adic distributions and the class of -adic
stochastic Levi processes were introduced. The special class of -adic CTRW
process and fractional-time -adic random walk as the diffusive limit of it
is considered. We found the asymptotic behavior of the probability measure of
initial distribution support for fractional-time -adic random walk.Comment: 18 page
Soft and non-soft structural transitions in disordered nematic networks
Properties of disordered nematic elastomers and gels are theoretically
investigated with emphasis on the roles of non-local elastic interactions and
crosslinking conditions. Networks originally crosslinked in the isotropic phase
lose their long-range orientational order by the action of quenched random
stresses, which we incorporate into the affine-deformation model of nematic
rubber elasticity. We present a detailed picture of mechanical quasi-Goldstone
modes, which accounts for an almost completely soft polydomain-monodomain (P-M)
transition under strain as well as a ``four-leaf clover'' pattern in
depolarized light scattering intensity. Dynamical relaxation of the domain
structure is studied using a simple model. The peak wavenumber of the structure
factor obeys a power-law-type slow kinetics and goes to zero in true mechanical
equilibrium. The effect of quenched disorder on director fluctuation in the
monodomain state is analyzed. The random frozen contribution to the fluctuation
amplitude dominates the thermal one, at long wavelengths and near the P-M
transition threshold. We also study networks obtained by crosslinking
polydomain nematic polymer melts. The memory of initial director configuration
acts as correlated and strong quenched disorder, which renders the P-M
transition non-soft. The spatial distribution of the elastic free energy is
strongly dehomogenized by external strain, in contrast to the case of
isotropically crosslinked networks.Comment: 19 pages, 15 EPS figure
- …