365 research outputs found
Quantitative photoacoustic imaging in radiative transport regime
The objective of quantitative photoacoustic tomography (QPAT) is to
reconstruct optical and thermodynamic properties of heterogeneous media from
data of absorbed energy distribution inside the media. There have been
extensive theoretical and computational studies on the inverse problem in QPAT,
however, mostly in the diffusive regime. We present in this work some numerical
reconstruction algorithms for multi-source QPAT in the radiative transport
regime with energy data collected at either single or multiple wavelengths. We
show that when the medium to be probed is non-scattering, explicit
reconstruction schemes can be derived to reconstruct the absorption and the
Gruneisen coefficients. When data at multiple wavelengths are utilized, we can
reconstruct simultaneously the absorption, scattering and Gruneisen
coefficients. We show by numerical simulations that the reconstructions are
stable.Comment: 40 pages, 13 figure
Study of noise effects in electrical impedance tomography with resistor networks
We present a study of the numerical solution of the two dimensional
electrical impedance tomography problem, with noisy measurements of the
Dirichlet to Neumann map. The inversion uses parametrizations of the
conductivity on optimal grids. The grids are optimal in the sense that finite
volume discretizations on them give spectrally accurate approximations of the
Dirichlet to Neumann map. The approximations are Dirichlet to Neumann maps of
special resistor networks, that are uniquely recoverable from the measurements.
Inversion on optimal grids has been proposed and analyzed recently, but the
study of noise effects on the inversion has not been carried out. In this paper
we present a numerical study of both the linearized and the nonlinear inverse
problem. We take three different parametrizations of the unknown conductivity,
with the same number of degrees of freedom. We obtain that the parametrization
induced by the inversion on optimal grids is the most efficient of the three,
because it gives the smallest standard deviation of the maximum a posteriori
estimates of the conductivity, uniformly in the domain. For the nonlinear
problem we compute the mean and variance of the maximum a posteriori estimates
of the conductivity, on optimal grids. For small noise, we obtain that the
estimates are unbiased and their variance is very close to the optimal one,
given by the Cramer-Rao bound. For larger noise we use regularization and
quantify the trade-off between reducing the variance and introducing bias in
the solution. Both the full and partial measurement setups are considered.Comment: submitted to Inverse Problems and Imagin
- …