1,828 research outputs found

    Organellar carbon metabolism is co-ordinated with distinct developmental phases of secondary xylem

    Get PDF
    Subcellular compartmentation of plant biosynthetic pathways in the mitochondria and plastids requires coordinated regulation of nuclear encoded genes, and the role of these genes has been largely ignored by wood researchers. In this study, we constructed a targeted systems genetics coexpression network of xylogenesis in Eucalyptus using plastid and mitochondrial carbon metabolic genes and compared the resulting clusters to the aspen xylem developmental series. The constructed network clusters reveal the organization of transcriptional modules regulating subcellular metabolic functions in plastids and mitochondria. Overlapping genes between the plastid and mitochondrial networks implicate the common transcriptional regulation of carbon metabolism during xylem secondary growth. We show that the central processes of organellar carbon metabolism are distinctly coordinated across the developmental stages of wood formation and are specifically associated with primary growth and secondary cell wall deposition. We also demonstrate that, during xylogenesis, plastid-targeted carbon metabolism is partially regulated by the central clock for carbon allocation towards primary and secondary xylem growth, and we discuss these networks in the context of previously established associations with wood-related complex traits. This study provides a new resolution into the integration and transcriptional regulation of plastid- and mitochondrial-localized carbon metabolism during xylogenesis

    Diffusion of tungsten in chromium: Experiments and atomistic modeling

    Get PDF
    The solute diffusion of tungsten at low concentrations in chromium has been investigated both by experiments and computational methods. From finite-source diffusion experiments measured with an Electron Probe Micro Analyzer at temperatures from 1526 to 1676 K, it was found that the diffusivity of tungsten in chromium follows the Arrhenius relationship D=D[subscript 0]exp(-Q[over]RT), where the activation energy was found to be Q = 386 ± 33 kJ/mol. Diffusion of tungsten in chromium was investigated computationally with both the activation–relaxation technique (ART) and molecular dynamics (MD) using a hybrid potential. From ART, the effective diffusion activation energy was determined to be Q = 315 ± 20 kJ/mol based on a multi-frequency model for a monovacancy mechanism. From MD, the square displacement of tungsten was analyzed at temperatures between 1200 and 1700 K, and the diffusion activation energy was determined to be Q = 310 ± 18 kJ/mol. In spite of possible complications arising due to experimental compositions away from the dilute limit, the agreement between experiments and simulations falls within the calculated uncertainties, supporting a monovacancy mechanism for diffusion of tungsten in chromium.United States. Defense Threat Reduction Agency (Grant No. HDTRA1-11-1-0062)United States. Army Research Office (Grant No. W911NF-09-1-0422)Kwanjeong Educational Foundation (Korea)United States. Dept. of Energy (DOE Computational Science Graduate Fellowship, Grant No. DE-FG02-97ER25308)Hertz Foundatio

    Campylobacter in aquatic and terrestrial mammals is driven by life traits: A systematic review and meta-analysis

    Get PDF
    IntroductionCampylobacter spp. infections are responsible for significant diarrheal disease burden across the globe, with prevalence thought to be increasing. Although wild avian species have been studied as reservoirs of Campylobacter spp., our understanding of the role of wild mammalian species in disease transmission and persistence is limited. Host factors influencing infection dynamics in wild mammals have been neglected, particularly life traits, and the role of these factors in zoonotic spillover risk is largely unknown.MethodsHere, we conducted a systematic literature review, identifying mammalian species that had been tested for Campylobacter spp. infections (molecular and culture based). We used logistic regression to evaluate the relationship between the detection of Campylobacter spp. in feces and host life traits (urban association, trophic level, and sociality).ResultsOur analysis suggest that C. jejuni transmission is associated with urban living and trophic level. The probability of carriage was highest in urban-associated species (p = 0.02793) and the most informative model included trophic level. In contrast, C. coli carriage appears to be strongly influenced by sociality (p = 0.0113) with trophic level still being important. Detection of Campylobacter organisms at the genus level, however, was only associated with trophic level (p = 0.0156), highlighting the importance of this trait in exposure dynamics across host and Campylobacter pathogen systems.DiscussionWhile many challenges remain in the detection and characterization of Camploybacter spp., these results suggest that host life traits may have important influence on pathogen exposure and transmission dynamics, providing a useful starting point for more directed surveillance approaches

    Physics of InAIAs/InGaAs Heterostructure Field-Effect Transistors

    Get PDF
    Contains an introduction, reports on three research projects, research conclusions and a list of publications.Joint Services Electronics Program Contract DAAHO4-95-1-003

    Association with humans and seasonality interact to reverse predictions for animal space use

    Get PDF
    Abstract Background Variation in animal space use reflects fitness trade-offs associated with ecological constraints. Associated theories such as the metabolic theory of ecology and the resource dispersion hypothesis generate predictions about what drives variation in animal space use. But, metabolic theory is usually tested in macro-ecological studies and is seldom invoked explicitly in within-species studies. Full evaluation of the resource dispersion hypothesis requires testing in more species. Neither have been evaluated in the context of anthropogenic landscape change. Methods In this study, we used data for banded mongooses (Mungos mungo) in northeastern Botswana, along a gradient of association with humans, to test for effects of space use drivers predicted by these theories. We used Bayesian parameter estimation and inference from linear models to test for seasonal differences in space use metrics and to model seasonal effects of space use drivers. Results Results suggest that space use is strongly associated with variation in the level of overlap that mongoose groups have with humans. Seasonality influences this association, reversing seasonal space use predictions historically-accepted by ecologists. We found support for predictions of the metabolic theory when moderated by seasonality, by association with humans and by their interaction. Space use of mongooses living in association with humans was more concentrated in the dry season than the wet season, when historically-accepted ecological theory predicted more dispersed space use. Resource richness factors such as building density were associated with space use only during the dry season. We found negligible support for predictions of the resource dispersion hypothesis in general or for metabolic theory where seasonality and association with humans were not included. For mongooses living in association with humans, space use was not associated with patch dispersion or group size over both seasons. Conclusions In our study, living in association with humans influenced space use patterns that diverged from historically-accepted predictions. There is growing need to explicitly incorporate human–animal interactions into ecological theory and research. Our results and methodology may contribute to understanding effects of anthropogenic landscape change on wildlife populations
    • …
    corecore