72 research outputs found

    Quasiparticle Lifetime in a Finite System: A Non--Perturbative Approach

    Full text link
    The problem of electron--electron lifetime in a quantum dot is studied beyond perturbation theory by mapping it onto the problem of localization in the Fock space. We identify two regimes, localized and delocalized, corresponding to quasiparticle spectral peaks of zero and finite width, respectively. In the localized regime, quasiparticle states are very close to single particle excitations. In the delocalized state, each eigenstate is a superposition of states with very different quasiparticle content. A transition between the two regimes occurs at the energy ≃Δ(g/ln⁡g)1/2\simeq\Delta(g/\ln g)^{1/2}, where Δ\Delta is the one particle level spacing, and gg is the dimensionless conductance. Near this energy there is a broad critical region in which the states are multifractal, and are not described by the Golden Rule.Comment: 13 pages, LaTeX, one figur

    Hypogonadism induced by surgical stress and brain trauma is reversed by human chorionic gonadotropin in male rats: A potential therapy for surgical and TBI-induced hypogonadism?

    Get PDF
    Introduction: Hypogonadotropic hypogonadism (HH) is an almost universal, yet underappreciated, endocrinological complication of traumatic brain injury (TBI). The goal of this study was to determine whether the developmental hormone human chorionic gonadotropin (hCG) treatment could reverse HH induced by a TBI. Methods: Plasma samples were collected at post-surgery/post-injury (PSD/PID) days -10, 1, 11, 19 and 29 from male Sprague-Dawley rats (5- to 6-month-old) that had undergone a Sham surgery (craniectomy alone) or CCI injury (craniectomy + bilateral moderate-to-severe CCI injury) and treatment with saline or hCG (400 IU/kg; i.m.) every other day. Results: Both Sham and CCI injury significantly decreased circulating testosterone (T), 11-deoxycorticosterone (11-DOC) and corticosterone concentrations to a similar extent (79.1% vs. 80.0%; 46.6% vs. 48.4%; 56.2% vs. 32.5%; respectively) by PSD/PID 1. hCG treatment returned circulating T to baseline concentrations by PSD/PID 1 (8.9 ± 1.5 ng/ml and 8.3 ± 1.9 ng/ml; respectively) and was maintained through PSD/PID 29. hCG treatment significantly, but transiently, increased circulating progesterone (P4) ~3-fold (30.2 ± 10.5 ng/ml and 24.2 ± 5.8 ng/ml) above that of baseline concentrations on PSD 1 and PID 1, respectively. hCG treatment did not reverse hypoadrenalism following either procedure. Conclusions: Together, these data indicate that (1) craniectomy is sufficient to induce persistent hypogonadism and hypoadrenalism, (2) hCG can reverse hypogonadism induced by a craniectomy or craniectomy +CCI injury, suggesting that (3) craniectomy and CCI injury induce a persistent hypogonadism by decreasing hypothalamic and/or pituitary function rather than testicular function in male rats. The potential role of hCG as a cheap, safe and readily available treatment for reversing surgery or TBI-induced hypogonadism is discussed

    Microbial dark matter sequences verification in amplicon sequencing and environmental metagenomics data

    Get PDF
    Although microorganisms constitute the most diverse and abundant life form on Earth, in many environments, the vast majority of them remain uncultured. As it is based on information gleaned mainly from cultivated microorganisms, our current body of knowledge regarding microbial life is partial and does not reflect actual microbial diversity. That diversity is hidden in the uncultured microbial majority, termed by microbiologists as “microbial dark matter” (MDM), a term borrowed from astrophysics. Metagenomic sequencing analysis techniques (both 16S rRNA gene and shotgun sequencing) compare gene sequences to reference databases, each of which represents only a small fraction of the existing microorganisms. Unaligned sequences lead to groups of “unknown microorganisms” that are usually ignored and rarefied from diversity analysis. To address this knowledge gap, we analyzed the 16S rRNA gene sequences of microbial communities from four different environments—a living organism, a desert environment, a natural aquatic environment, and a membrane bioreactor for wastewater treatment. From those datasets, we chose representative sequences of potentially unknown bacteria for additional examination as “microbial dark matter sequences” (MDMS). Sequence existence was validated by specific amplification and re-sequencing. These sequences were screened against databases and aligned to the Genome Taxonomy Database to build a comprehensive phylogenetic tree for additional sequence classification, revealing potentially new candidate phyla and other lineages. These putative MDMS were also screened against metagenome-assembled genomes from the explored environments for additional validation and for taxonomic and metabolic characterizations. This study shows the immense importance of MDMS in environmental metataxonomic analyses of 16S rRNA gene sequences and provides a simple and readily available methodology for the examination of MDM hidden behind amplicon sequencing results
    • 

    corecore