5 research outputs found

    Recall Performance for Content-Addressable Memory Using Adiabatic Quantum Optimization

    No full text
    A content-addressable memory (CAM) stores key-value associations such that the key is recalled by providing its associated value. While CAM recall is traditionally performed using recurrent neural network models, we show how to solve this problem using adiabatic quantum optimization. Our approach maps the recurrent neural network to a commercially available quantum processing unit by taking advantage of the common underlying Ising spin model. We then assess the accuracy of the quantum processor to store key-value associations by quantifying recall performance against an ensemble of problem sets. We observe that different learning rules from the neural network community influence recall accuracy but performance appears to be limited by potential noise in the processor. The strong connection established between quantum processors and neural network problems supports the growing intersection of these two ideas

    Snowmass White Paper: Quantum Computing Systems and Software for High-energy Physics Research

    No full text
    Quantum computing offers a new paradigm for advancing high-energy physics research by enabling novel methods for representing and reasoning about fundamental quantum mechanical phenomena. Realizing these ideals will require the development of novel computational tools for modeling and simulation, detection and classification, data analysis, and forecasting of high-energy physics (HEP) experiments. While the emerging hardware, software, and applications of quantum computing are exciting opportunities, significant gaps remain in integrating such techniques into the HEP community research programs. Here we identify both the challenges and opportunities for developing quantum computing systems and software to advance HEP discovery science. We describe opportunities for the focused development of algorithms, applications, software, hardware, and infrastructure to support both practical and theoretical applications of quantum computing to HEP problems within the next 10 years
    corecore