1,062 research outputs found

    Dynamics of viscoelastic membranes

    Get PDF
    We determine both the in-plane and out-of-plane dynamics of viscoelastic membranes separating two viscous fluids in order to understand microrheological studies of such membranes. We demonstrate the general viscoelastic signatures in the dynamics of shear, bending, and compression modes. We also find a screening of the otherwise two-dimensional character of the response to point forces due to the presence of solvent. Finally, we show that there is a linear, hydrodynamic coupling between the in-plane compression modes of the membrane and the out-of-plane bending modes in the case where the membrane separates two different fluids or environments

    Two-point microrheology and the electrostatic analogy

    Full text link
    The recent experiments of Crocker et al. suggest that microrheological measurements obtained from the correlated fluctuations of widely-separatedprobe particles determine the rheological properties of soft, complex materials more accurately than do the more traditional particle autocorrelations. This presents an interesting problem in viscoelastic dynamics. We develop an important, simplifing analogy between the present viscoelastic problem and classical electrostatics. Using this analogy and direct calculation we analyze both the one and two particle correlations in a viscoelastic medium in order to explain this observation

    Plug flow and the breakdown of Bagnold scaling in cohesive granular flows

    Full text link
    Cohesive granular media flowing down an inclined plane are studied by discrete element simulations. Previous work on cohesionless granular media demonstrated that within the steady flow regime where gravitational energy is balanced by dissipation arising from intergrain forces, the velocity profile in the flow direction scales with depth in a manner consistent with the predictions of Bagnold. Here we demonstrate that this Bagnold scaling does not hold for the analogous steady-flows in cohesive granular media. We develop a generalization of the Bagnold constitutive relation to account for our observation and speculate as to the underlying physical mechanisms responsible for the different constitutive laws for cohesive and noncohesive granular media.Comment: 8 pages, 10 figure

    One- and two-particle microrheology

    Full text link
    We study the dynamics of rigid spheres embedded in viscoelastic media and address two questions of importance to microrheology. First we calculate the complete response to an external force of a single bead in a homogeneous elastic network viscously coupled to an incompressible fluid. From this response function we find the frequency range where the standard assumptions of microrheology are valid. Second we study fluctuations when embedded spheres perturb the media around them and show that mutual fluctuations of two separated spheres provide a more accurate determination of the complex shear modulus than do the fluctuations of a single sphere.Comment: 4 pages, 1 figur

    Stability of Monomer-Dimer Piles

    Full text link
    We measure how strong, localized contact adhesion between grains affects the maximum static critical angle, theta_c, of a dry sand pile. By mixing dimer grains, each consisting of two spheres that have been rigidly bonded together, with simple spherical monomer grains, we create sandpiles that contain strong localized adhesion between a given particle and at most one of its neighbors. We find that tan(theta_c) increases from 0.45 to 1.1 and the grain packing fraction, Phi, decreases from 0.58 to 0.52 as we increase the relative number fraction of dimer particles in the pile, nu_d, from 0 to 1. We attribute the increase in tan(theta_c(nu_d)) to the enhanced stability of dimers on the surface, which reduces the density of monomers that need to be accomodated in the most stable surface traps. A full characterization and geometrical stability analysis of surface traps provides a good quantitative agreement between experiment and theory over a wide range of nu_d, without any fitting parameters.Comment: 11 pages, 12 figures consisting of 21 eps files, submitted to PR

    Weak Charge Quantization as an Instanton of Interacting sigma-model

    Full text link
    Coulomb blockade in a quantum dot attached to a diffusive conductor is considered in the framework of the non-linear sigma-model. It is shown that the weak charge quantization on the dot is associated with instanton configurations of the Q-field in the conductor. The instantons have a finite action and are replica non--symmetric. It is argued that such instantons may play a role in the transition regime to the interacting insulator.Comment: 4 pages. The 2D case substantially modifie

    How Sandcastles Fall

    Full text link
    Capillary forces significantly affect the stability of sandpiles. We analyze the stability of sandpiles with such forces, and find that the critical angle is unchanged in the limit of an infinitely large system; however, this angle is increased for finite-sized systems. The failure occurs in the bulk of the sandpile rather than at the surface. This is related to a standard result in soil mechanics. The increase in the critical angle is determined by the surface roughness of the particles, and exhibits three regimes as a function of the added-fluid volume. Our theory is in qualitative agreement with the recent experimental results of Hornbaker et al., although not with the interpretation they make of these results.Comment: 4 pages, 2 figures, revte

    Rhythmogenic neuronal networks, pacemakers, and k-cores

    Full text link
    Neuronal networks are controlled by a combination of the dynamics of individual neurons and the connectivity of the network that links them together. We study a minimal model of the preBotzinger complex, a small neuronal network that controls the breathing rhythm of mammals through periodic firing bursts. We show that the properties of a such a randomly connected network of identical excitatory neurons are fundamentally different from those of uniformly connected neuronal networks as described by mean-field theory. We show that (i) the connectivity properties of the networks determines the location of emergent pacemakers that trigger the firing bursts and (ii) that the collective desensitization that terminates the firing bursts is determined again by the network connectivity, through k-core clusters of neurons.Comment: 4+ pages, 4 figures, submitted to Phys. Rev. Let
    corecore