533 research outputs found

    Mass landscapes of seven scorpion species: the first analyses of Australian species with 1,5-DAN matrix

    Get PDF
    Scorpion venoms have been studied for over fifty years; however, the majority of research has focussed primarily on medically important Buthidae species. Additionally, venoms of the estimated 200 species of scorpion native to Australia have received very little attention. The first venom mass profiles of six non-buthid and one buthid scorpion species are presented herein, four of which are endemic to Australia. While masses under 5 kDa dominated the venoms of all species, the buthid venom contained considerably more masses between 7 and 8 kDa than those of the non-buthids, corroborating the emergent trend that buthids are richer in long-chain neurotoxins than non-buthids. The Australian scorpion venom fractions were also analysed with the relatively new MALDI-ToF matrix 1,5-DAN. Over forty partial sequences were obtained, the majority of which are homologous to scorpion antimicrobials such as opistoporin and IsCT2. Overall, this study is the single most comprehensive mass spectrometric analysis of scorpion venom landscapes to date and provides an insight into untapped Australian species

    Inhibition of the norepinephrine transporter by χ-conotoxin dendrimers.

    Get PDF
    Peptide dendrimers are a novel class of macromolecules of emerging interest with the potential of delayed renal clearance due to their molecular size and enhanced activity due to the multivalency effect. In this work, an active analogue of the disulfide-rich χ-conotoxin χ-MrIA (χ-MrIA), a norepinephrine reuptake (norepinephrine transporter) inhibitor, was grafted onto a polylysine dendron. Dendron decoration was achieved by employing copper-catalyzed alkyne-azide cycloaddition with azido-PEG chain-modified χ-MrIA analogues, leading to homogenous 4-mer and 8-mer χ-MrIA dendrimers with molecular weights ranging from 8 to 22 kDa. These dendrimers were investigated for their impact on peptide secondary structure, in vitro functional activity, and potential anti-allodynia in vivo. NMR studies showed that the χ-MrIA tertiary structure was maintained in the χ-MrIA dendrimers. In a functional norepinephrine transporter reuptake assay, χ-MrIA dendrimers showed slightly increased potency relative to the azido-PEGylated χ-MrIA analogues with similar potency to the parent peptide. In contrast to χ-MrIA, no anti-allodynic action was observed when the χ-MrIA dendrimers were administered intrathecally in a rat model of neuropathic pain, suggesting that the larger dendrimer structures are unable to diffuse through the spinal column tissue and reach the norepinephrine transporter.NHMRC Grants: 1045964 & 107211

    Characterisation of Nav types endogenously expressed in human SH-SY5Y neuroblastoma cells

    Get PDF
    The human neuroblastoma cell line SH-SY5Y is a potentially useful model for the identification and characterisation of Na(v) modulators, but little is known about the pharmacology of their endogenously expressed Na(v)s. The aim of this study was to determine the expression of endogenous Na(v) α and β subunits in SH-SY5Y cells using PCR and immunohistochemical approaches, and pharmacologically characterise the Na(v) isoforms endogenously expressed in this cell line using electrophysiological and fluorescence approaches. SH-SY5Y human neuroblastoma cells were found to endogenously express several Na(v) isoforms including Na(v)1.2 and Na(v)1.7. Activation of endogenously expressed Na(v)s with veratridine or the scorpion toxin OD1 caused membrane depolarisation and subsequent Ca(2+) influx through voltage-gated L- and N-type calcium channels, allowing Na(v) activation to be detected with membrane potential and fluorescent Ca(2) dyes. μ-Conotoxin TIIIA and ProTxII identified Na(v)1.2 and Na(v)1.7 as the major contributors of this response. The Na(v)1.7-selective scorpion toxin OD1 in combination with veratridine produced a Na(v)1.7-selective response, confirming that endogenously expressed human Na(v)1.7 in SH-SY5Y cells is functional and can be synergistically activated, providing a new assay format for ligand screening.NHMRC Program Grant: 056992

    Hydrophobic residues at position 10 of α-conotoxin PnIA influence subtype selectivity between α7 and α3β2 neuronal nicotinic acetylcholine receptors

    Get PDF
    Neuronal nicotinic acetylcholine receptors (nAChRs) are a diverse class of ligand-gated ion channels involved in neurological conditions such as neuropathic pain and Alzheimer's disease. α-Conotoxin [A10L]PnIA is a potent and selective antagonist of the mammalian α7 nAChR with a key binding interaction at position 10. We now describe a molecular analysis of the receptor-ligand interactions that determine the role of position 10 in determining potency and selectivity for the α7 and α3β2 nAChR subtypes. Using electrophysiological and radioligand binding methods on a suite of [A10L]PnIA analogs we observed that hydrophobic residues in position 10 maintained potency at both subtypes whereas charged or polar residues abolished α7 binding. Molecular docking revealed dominant hydrophobic interactions with several α7 and α3β2 receptor residues via a hydrophobic funnel. Incorporation of norleucine (Nle) caused the largest (8-fold) increase in affinity for the α7 subtype (Ki = 44 nM) though selectivity reverted to α3β2 (IC50 = 0.7 nM). It appears that the placement of a single methyl group determines selectivity between α7 and α3β2 nAChRs via different molecular determinants

    The synthesis and structure of an n-terminal dodecanoic acid conjugate of a-conotoxin MII

    Get PDF
    The alpha-conotoxin MII is a 16 amino acid long peptide toxin isolated from the marine snail, Conus magus. This toxin has been found to be a highly selective and potent inhibitor of neuronal nicotinic acetylcholine receptors of the subtype alpha3beta2. To improve the bioavailability of this peptide, we have coupled to the N-terminus of conotoxin MII, 2-amino-D,L-dodecanoic acid (Laa) creating a lipidic linear peptide which was then successfully oxidised to produce the correctly folded conotoxin MII construct

    Isolation of two insecticidal toxins from venom of the Australian theraphosid spider Coremiocnemis tropix

    Full text link
    © 2016 Elsevier Ltd Sheep flystrike is caused by parasitic flies laying eggs on soiled wool or open wounds, after which the hatched maggots feed on the sheep flesh and often cause large lesions. It is a significant economic problem for the livestock industry as infestations are difficult to control due to ongoing cycles of larval development into flies followed by further egg laying. We therefore screened venom fractions from the Australian theraphosid spider Coremiocnemis tropix to identify toxins active against the sheep blowfly Lucilia cuprina, which is the primary cause of flystrike in Australia. This screen led to isolation of two insecticidal peptides, Ct1a and Ct1b, that are lethal to blowflies within 24 h of injection. The primary structure of these peptides was determined using a combination of Edman degradation and sequencing of a C. tropix venom-gland transcriptome. Ct1a and Ct1b contain 39 and 38 amino acid residues, respectively, including six cysteine residues that form three disulfide bonds. Recombinant production in bacteria (Escherichia coli) resulted in low yields of Ct1a whereas solid-phase peptide synthesis using native chemical ligation produced sufficient quantities of Ct1a for functional analyses. Synthetic Ct1a had no effect on voltage-gated sodium channels from the American cockroach Periplanata americana or the German cockroach Blattella germanica, but it was lethal to sheep blowflies with an LD50 of 1687 pmol/g

    Mapping the molecular surface of the analgesic NaV1.7-selective peptide Pn3a reveals residues essential for membrane and channel interactions

    Get PDF
    Compelling human genetic studies have identified the voltage-gated sodium channel NaV1.7 as a promising therapeutic target for the treatment of pain. The analgesic spider venom-derived peptide µtheraphotoxin-Pn3a is an exceptionally potent and selective inhibitor of NaV1.7, however, little is known about the structure-activity relationships or channel interactions that define this activity. We rationally designed seventeen Pn3a analogues and determined their activity at hNaV1.7 using patchclamp electrophysiology. The positively charged amino acids K22 and K24 were identified as crucial for Pn3a activity, with molecular modeling identifying interactions of these residues with the S3-S4 loop of domain II of hNaV1.7. Removal of hydrophobic residues Y4, Y27 and W30 led to a loss of potency (>250-fold), while replacement of negatively charged D1 and D8 residues with a positively charged lysine led to increased potencies (>13-fold), likely through alterations in membrane lipid interactions. Mutating D8 to an asparagine led to the greatest improvement in Pn3a potency at NaV1.7 (20-fold), whilst maintaining >100-fold selectivity over the major off-targets NaV1.4, NaV1.5 and NaV1.6. The Pn3a[D8N] mutant retained analgesic activity in vivo, significantly attenuating mechanical allodynia in a clinically relevant mouse model of post-surgical pain at doses 3-fold lower than wild-type Pn3a, without causing motor adverse effects. Results from this study will facilitate future rational design of potent and selective peptidic NaV1.7 inhibitors for the development of more efficacious and safer analgesics but also to further investigate the involvement of NaV1.7 in pain

    Evaluation of chemical strategies for improving the stability and oral toxicity of insecticidal peptides

    Full text link
    © 2018 by the authors. Spider venoms are a rich source of insecticidal peptide toxins. Their development as bioinsecticides has, however, been hampered due to concerns about potential lack of stability and oral bioactivity. We therefore systematically evaluated several synthetic strategies to increase the stability and oral potency of the potent insecticidal spider-venom peptide !-HXTX-Hv1a (Hv1a). Selective chemical replacement of disulfide bridges with diselenide bonds and N- to C-terminal cyclization were anticipated to improve Hv1a resistance to proteolytic digestion, and thereby its activity when delivered orally. We found that native Hv1a is orally active in blowflies, but 91-fold less potent than when administered by injection. Introduction of a single diselenide bond had no effect on the susceptibility to scrambling or the oral activity of Hv1a. N- to C-terminal cyclization of the peptide backbone did not significantly improve the potency of Hv1a when injected into blowflies and it led to a significant decrease in oral activity. We show that this is likely due to a dramatically reduced rate of translocation of cyclic Hv1a across the insect midgut, highlighting the importance of testing bioavailability in addition to toxin stability
    • …
    corecore