25 research outputs found

    Terrestrial magma ocean solidification and formation of a candidate D" layer

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 31-34).In this thesis we investigate the solidification of early magma oceans on the Earth and the formation of a deep dense layer at the core-mantle boundary. We also study the concentrations and densities of the last layers of the solidified magma ocean and how they create a deep dense layer after solid-state overturn. The deep dense layer that forms in our model matches the bulk physical properties of the D" layer observed by other workers. This layer is also sufficiently dense that the bulk of its material is not reentrained by the mantle after the onset of convection, and that this layer is enriched in incompatible elements such as samarium and neodymium regardless of distribution coefficients used for incompatible elements in mantle minerals such as perovskite. However, we found that this probable D" layer is more enriched in samarium than is to be expected for a planet's mantle which evolves from an initially chondritic composition.by Alessondra Springmann.S.M

    Thermal Alteration of Labile Elements in Carbonaceous Chondrites

    Full text link
    Carbonaceous chondrite meteorites are some of the oldest Solar System planetary materials available for study. The CI group has bulk abundances of elements similar to those of the solar photosphere. Of particular interest in carbonaceous chondrite compositions are labile elements, which vaporize and mobilize efficiently during post-accretionary parent-body heating events. Thus, they can record low-temperature alteration events throughout asteroid evolution. However, the precise nature of labile-element mobilization in planetary materials is unknown. Here we characterize the thermally induced movements of the labile elements S, As, Se, Te, Cd, Sb, and Hg in carbonaceous chondrites by conducting experimental simulations of volatile-element mobilization during thermal metamorphism. This process results in appreciable loss of some elements at temperatures as low as 500 K. This work builds on previous laboratory heating experiments on primitive meteorites and shows the sensitivity of chondrite compositions to excursions in temperature. Elements such as S and Hg have the most active response to temperature across different meteorite groups. Labile element mobilization in primitive meteorites is essential for quantifying elemental fractionation that occurred on asteroids early in Solar System history. This work is relevant to maintaining a pristine sample from asteroid (101955) Bennu from the OSIRIS-REx mission and constraining the past orbital history of Bennu. Additionally, we discuss thermal effects on surface processes of near-Earth asteroids, including the thermal history of "rock comets" such as (3200) Phaethon. This work is also critical for constraining the concentrations of contaminants in vaporized water extracted from asteroid regolith as part of future in situ resource utilization for sustained robotic and human space exploration.Comment: 12 pages of text, 3 tables, 7 figures, accepted by Icaru

    Binary Near-Earth Asteroid (285263) 1998 QE2: Goldstone and Arecibo Radar Imaging and Lightcurve Observations

    No full text
    We observed near-Earth Amor asteroid 1998 QE2 with the Goldstone and Arecibo Observatory planetary radar systems, as well as with infrared and optical telescopes in the United States, Slovakia, Australia, and Colombia

    How Sublimation Delays the Onset of Dusty Debris Disk Formation around White Dwarf Stars

    Full text link
    Abstract Although numerous white dwarf stars host dusty debris disks, the temperature distribution of these stars differs significantly from the white dwarf population as a whole. Dusty debris disks exist exclusively around white dwarfs cooler than 27,000 K. This is all the more enigmatic given that the formation processes of dusty debris disks should favor younger, hotter white dwarfs, which likely host more dynamically unstable planetary systems. Here we apply a sophisticated material sublimation model to white dwarf systems to show that these statistics are actually a natural result of the interplay of thermal and tidal forces and how they define the circumstellar regions where dusty debris disks can form. We demonstrate that these processes tend to prevent stability against both sublimative destruction and reaccretion into planetesimals for rocky materials until white dwarfs cool to below ∼25,000–32,000 K, in agreement with the observed limit of ∼27,000 K. For pure water ice, this critical temperature is less than 2700 K (requiring a cooling age older the universe); this precludes pure water ice–rich debris disks forming through the accepted two-step mechanism. The critical temperature is size-dependent; more massive white dwarfs could potentially host dusty debris disks at warmer temperatures. Our model suggests that the location of the disks within the PG 0010+280, GD 56, GD 362, and PG 1541+651 systems are consistent with a forsterite-dominated olivine composition. We also find that very cool white dwarfs may simultaneously host multiple, independently formed dusty debris disks, consistent with observations of the LSPM J0207+3331 system.</jats:p
    corecore