55 research outputs found
Liver X receptor activation reduces angiogenesis by impairing lipid raft localization and signaling of vascular endothelial growth factor receptor-2
The neuronal pentraxin-2 pathway is an unrecognized target in human neuroblastoma which also offers prognostic value in patients
Lipidomic and proteomic insights from extracellular vesicles in the postmortem dorsolateral prefrontal cortex reveal substance use disorder-induced brain changes
Substance use disorder (SUD) significantly increases the risk of neurotoxicity, inflammation, oxidative stress, and impaired neuroplasticity. The activation of inflammatory pathways by substances may lead to reactive astrogliosis and chronic neuroinflammation, potentially mediated by the release of extracellular particles (EPs), such as extracellular condensates (ECs) and extracellular vesicles (EVs). These particles, which reflect the physiological, pathophysiological, and metabolic states of their cells of origin, might carry molecular signatures indicative of SUD. In particular, our study investigated neuroinflammatory signatures in SUD patients by isolating EVs from the dorsolateral prefrontal cortex (dlPFC) Brodmann's area 9 (BA9) from postmortem subjects. We isolated BA9-derived EVs from postmortem brain tissues of eight individuals (controls: n = 4, SUD: n = 4). The physical properties (concentration, size, zeta potential, morphology) of the EVs were analyzed, and the EVs were subjected to integrative multiomics analysis to profile the lipidomic and proteomic characteristics. We assessed the interactions and bioactivity of EVs by evaluating their uptake by glial cells. We further assessed the effects of EVs on complement mRNA expression in glial cells and on microglial migration. No significant differences in EV concentration, size, zeta potential, or surface markers were observed between the SUD group and the control group. However, lipidomic analysis revealed significant enrichment of glycerophosphoinositol bisphosphate (PIP2) in SUD-derived EVs. Proteomic analysis revealed the downregulation of SERPINB12, ACYP2, CAMK1D, DSC1, and FLNB and the upregulation of C4A, C3, and ALB in SUD-derived EVs. Gene Ontology (GO) and protein‒protein interactome analyses revealed functions associated with the identified proteins, such as cell motility, focal adhesion, and acute phase response signaling. Both control and SUD-derived EVs increased C3 and C4 mRNA expression in microglia, but only SUD-derived EVs upregulated these genes in astrocytes. SUD-EVs also significantly enhanced microglial migration in a wound healing assay. This study successfully isolated EVs from postmortem brains and used a multiomics approach to identify EV-associated lipids and proteins in SUD. Elevated C3 and C4 in SUD-derived EVs and the distinct effects of EVs on glial cells suggest a crucial role for these cells in acute phase response signaling and neuroinflammation.</p
Ex vivo-expanded bone marrow CD34(+) for acute myocardial infarction treatment: in vitro and in vivo studies.
Transmembrane protein TMEM230, regulator of metalloproteins and motor proteins in gliomas and gliosis
Glial cells provide physical and chemical support and protection for neurons and for the extracellular compartments of neural tissue through secretion of soluble factors, insoluble scaffolds, and vesicles. Additionally, glial cells have regenerative capacity by remodeling their physical microenvironment and changing physiological properties of diverse cell types in their proximity. Various types of aberrant glial and macrophage cells are associated with human diseases, disorders, and malignancy. We previously demonstrated that transmembrane protein, TMEM230 has tissue revascularization and regenerating capacity by its ability to secrete pro-angiogenic factors and metalloproteinases, inducing endothelial cell sprouting and channel formation. In healthy normal neural tissue, TMEM230 is predominantly expressed in glial and marcophate cells, suggesting a prominent role in neural tissue homeostasis. TMEM230 regulation of the endomembrane system was supported by co-expression with RNASET2 (lysosome, mitochondria, and vesicles) and STEAP family members (Golgi complex). Intracellular trafficking and extracellular secretion of glial cellular components are associated with endocytosis, exocytosis and phagocytosis mediated by motor proteins. Trafficked components include metalloproteins, metalloproteinases, glycans, and glycoconjugate processing and digesting enzymes that function in phagosomes and vesicles to regulate normal neural tissue microenvironment, homeostasis, stress response, and repair following neural tissue injury or degeneration. Aberrantly high sustained levels TMEM230 promotes metalloprotein expression, trafficking and secretion which contribute to tumor associated infiltration and hypervascularization of high tumor grade gliomas. Following injury of the central nervous or peripheral systems, transcient regulated upregulation of TMEM230 promotes tissue wound healing, remodeling and revascularization by activating glial and macrophage generated microchannels/microtubules (referred to as vascular mimicry) and blood vessel sprouting and branching. Our results support that TMEM230 may act as a master regulator of motor protein mediated trafficking and compartmentalization of a large class of metalloproteins in gliomas and gliosis
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly
Role of the microenvironment in the specification of endothelial progenitors derived from embryonic stem cells
- …
