42 research outputs found

    Can a Gleason 6 or Less Microfocus of Prostate Cancer

    Get PDF
    Prostate cancer (PC) remains a cause of death worldwide. Here we investigate whether a single microfocus of PC at the biopsy (graded as Gleason 6 or less, ≤5% occupancy) and the PSA <10 ng/mL can define the archetype of low-risk prostate disease. 4500 consecutive patients were enrolled. Among them, 134 patients with a single micro-focus of PC were followed up, and the parameters influencing the biochemical relapse (BR) were analysed. Out of 134 patients, 94 had clinically significant disease, specifically in 74.26% of the patients with PSA <10 ng/mL. Positive surgical margins and the extracapsular invasion were found in 29.1% and 51.4% patients, respectively. BR was observed in 29.6% of the patients. Cox regression evidenced a correlation between the BR and Gleason grade at the retropubic radical prostatectomy (RRP), capsular invasion, and the presence of positive surgical margins. Multivariate regression analysis showed a statistically significant correlation between the presence of surgical margins at the RRP and BR. Considering a single micro-focus of PC at the biopsy and PSA serum level <10 ng/mL, clinically significant disease was found in 74.26% patients and only positive surgical margins are useful for predicting the BR

    Compressive sampling for multispectral imaging in the vis-NIR-TIR: optical design of space telescopes

    Get PDF
    Micro-satellites equipped with multispectral payloads are now under development to acquire information on the radiation reflected and emitted from the earth in the vis-NIR-TIR bands. In this framework, we are studying different approaches based on the compressive sampling technique supported by innovative multispectral detectors, where the image sampling is performed on the telescope focal plane with a Digital Micromirror Device (DMD). We will describe in the paper the possibilities and the constraints given by the use of the DMD in the focal plane. The optical design of the telescope, relay system and detector in two different application cases will be provided

    Bladder metastases of appendiceal mucinous adenocarcinoma: a case presentation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Appendiceal adenocarcinoma is rare with a frequency of 0.08% of all surgically removed appendices. Few cases of appendiceal carcinoma infiltrating the bladder wall for spatial contiguity have been documented.</p> <p>Case Presentation</p> <p>A case is reported of a 45-years old woman with mucinous cystadenocarcinoma of the appendix with bladder metastasis. Although ultrasonography and voided urinary cytology were negative, abdomen computed tomography (CT) scan and cystoscopy and subsequent pathological examination revealed a mass exclusively located in the anterior wall of the bladder. Histopathology of the transurethral bladder resection revealed a bladder adenocarcinoma [6 cm (at the maximum diameter) × 2,5 cm; approximate weight: 10 gr] with focal mucinous aspects penetrating the muscle and perivisceral fat. Laparotomy evidenced the presence of a solid mass of the appendix (2,5 cm × 3 cm × 2 cm) extending to the loco-regional lymph nodes. Appendectomy and right hemicolectomy, linfoadenectomy and partial cystectomy were performed. The subsequent pathological examination revealed a mucinous cystadenocarcinoma of the appendix with metastatic cells colonising the anterior bladder wall and several colic lymph nodes.</p> <p>Conclusions</p> <p>The rarity of the appendiceal carcinoma invading the urinary bladder and its usual involvement of nearest organs and the posterior bladder wall, led us to describe this case which demonstrates the ability of the appendiceal cancer to metastasize different regions of urinary bladder.</p

    UV Sensor Based on Surface Acoustic Waves in ZnO/Fused Silica

    No full text
    Zinc oxide (ZnO) thin films have been grown by radio frequency sputtering technique on fused silica substrates. Optical and morphological characteristics of as-grown ZnO samples were measured by various techniques; an X-ray diffraction spectrum showed that the films exhibited hexagonal wurtzite structure and were c-axis-oriented normal to the substrate surface. Scanning electron microscopy images showed the dense columnar structure of the ZnO layers, and light absorption measurements allowed us to estimate the penetration depth of the optical radiation in the 200 to 480 nm wavelength range and the ZnO band-gap. ZnO layers were used as a basic material for surface acoustic wave (SAW) delay lines consisting of two Al interdigitated transducers (IDTs) photolithographically implemented on the surface of the piezoelectric layer. The Rayleigh wave propagation characteristics were tested in darkness and under incident UV light illumination from the top surface of the ZnO layer and from the fused silica/ZnO interface. The sensor response, i.e., the wave velocity shift due to the acoustoelectric interaction between the photogenerated charge carriers and the electric potential associated with the acoustic wave, was measured for different UV power densities. The reversibility and repeatability of the sensor responses were assessed. The time response of the UV sensor showed a rise time and a recovery time of about 10 and 13 s, respectively, and a sensitivity of about 318 and 341 ppm/(mW/cm2) for top and bottom illumination, respectively. The ZnO/fused silica-based SAW UV sensors can be interrogated across the fused silica substrate thanks to its optical transparency in the UV range. The backlighting interrogation can find applications in harsh environments, as it prevents the sensing photoconductive layer from aggressive environmental effects or from any damage caused by cleaning the surface from dust which could deteriorate the sensor’s performance. Moreover, since the SAW sensors, by their operating principle, are suitable for wireless reading via radio signals, the ZnO/fused-silica-based sensors have the potential to be the first choice for UV sensing in harsh environments

    Investigation of the humidity effects on SnO2-based sensors in CO detection.

    No full text
    An algorithm for compensating H2O vapor pressure in CO detection is proposed here and tested on SnO2 thick-film gas sensors. For each sensor working at a fixed temp., the conductance, G, is fitted by an anal. surface, whose expression can be inverted to det. the CO concn. once the H2O partial pressure is measured. As soon as the rate of H2O-vapor pressure change is slower than .apprx.300 Pa/min, G is a function of the temp., H2O vapor and CO concn. If quicker H2O vapor variations occur instead, the sensing film undergoes a nonnegligible transitory phenomenon during which G assumes different values even at fixed H2O vapor pressure and temp. This phenomenon prevents the compensation from working properly. An explanation of the behavior is offered by the interpretation of kinetics equations at surface

    Basic interpretation of thick film gas sensors for atmospheric application

    No full text
    Functional materials for thick film gas sensors have been examined: nanosized powder preparation methods, such as sol–gel and hydrothermal processes, morphological, micro-structural and electrical properties, in particular those depending on average grain dimensions. In this context, a theoretical conduction model, able to determine the characteristic length below which a material can be properly considered as anostructured, has been illustrated. The performances of sensing layers, deposited through screen-printing technology, have been examined, also considering their behaviour in on-site applications. The influence of some ambient parameters changing with time, such as temperature and humidity, have been investigated. Consequently, accurate NOx and CO concentrations were obtained, compensating the sensors responses from the water vapor effect
    corecore