38 research outputs found

    Zn(II)-curc targets p53 in thyroid cancer cells

    Get PDF
    P53 mutation is a common event in many cancers, including thyroid carcinoma. Defective p53 activity promotes cancer resistance to therapies and a more malignant phenotype, acquiring oncogenic functions. Rescuing the function of mutant p53 (mutp53) protein is an attractive anticancer therapeutic strategy. Zn(II)-curc is a novel small molecule that has been shown to target mutp53 protein in several cancer cells, but its effect in thyroid cancer cells remains unclear. Here, we investigated whether Zn(II)-curc could affect p53 in thyroid cancer cells with both p53 mutation (R273H) and wild-type p53. Zn(II)-curc induced mutp53H273 downregulation and reactivation of wild-type functions, such as binding to canonical target promoters and target gene transactivation. This latter effect was similar to that induced by PRIMA-1. In addition, Zn(II)-curc triggered p53 target gene expression in wild-type p53-carrying cells. In combination treatments, Zn(II)-curc enhanced the antitumor activity of chemotherapeutic drugs, in both mutant and wild-type-carrying cancer cells. Taken together, our data indicate that Zn(II)-curc promotes the reactivation of p53 in thyroid cancer cells, providing in vitro evidence for a potential therapeutic approach in thyroid cancers

    Interplay between endoplasmic reticulum (ER) stress and autophagy induces mutant p53H273 degradation

    Get PDF
    The unfolded protein response (UPR) is an adaptive response to intrinsic and external stressors, and it is mainly activated by the accumulation of misfolded proteins at the endoplasmic reticulum (ER) lumen producing ER stress. The UPR signaling network is interconnected with autophagy, the proteolytic machinery specifically devoted to clearing misfolded proteins in order to survive bioenergetic stress and/or induce cell death. Oncosuppressor TP53 may undergo inactivation following missense mutations within the DNA-binding domain (DBD), and mutant p53 (mutp53) proteins may acquire a misfolded conformation, often due to the loss of the DBD-bound zinc ion, leading to accumulation of hyperstable mutp53 proteins that correlates with more aggressive tumors, resistance to therapies, and poorer outcomes. We previously showed that zinc supplementation induces mutp53 protein degradation by autophagy. Here, we show that mutp53 (i.e., Arg273) degradation following zinc supplementation is correlated with activation of ER stress and of the IRE1α/XBPI arm of the UPR. ER stress inhibition with chemical chaperone 4-phenyl butyrate (PBA) impaired mutp53 downregulation, which is similar to IRE1α/XBPI specific inhibition, reducing cancer cell death. Knockdown of mutp53 failed to induce UPR/autophagy activation indicating that the effect of zinc on mutp53 folding was likely the key event occurring in ER stress activation. Recently discovered small molecules targeting components of the UPR show promise as a novel anticancer therapeutic intervention. However, our findings showing UPR activation during mutp53 degradation indicate that caution is necessary in the design of therapies that inhibit UPR components

    Hyperglycemia triggers HIPK2 protein degradation

    Get PDF
    Homeodomain interacting protein kinase-2 (HIPK2) is an evolutionary conserved kinase that modulates several key molecular pathways to restrain tumor growth and induce p53-depending apoptotic cell-death in response to anticancer therapies. HIPK2 silencing in cancer cells leads to chemoresistance and cancer progression, in part due to p53 inhibition. Recently, hyperglycemia has been shown to reduce p53 phosphorylation at serine 46 (Ser46), the target residue of HIPK2, thus impairing p53 apoptotic function. Here we asked whether hyperglycemia could, upstream of p53, target HIPK2. We focused on the effect of high glucose (HG) on HIPK2 protein stability and the underlying mechanisms. We found that HG reduced HIPK2 protein levels, therefore impairing HIPK2-induced p53 apoptotic activity. HG-triggered HIPK2 protein downregulation was rescued by both proteasome inhibitor MG132 and by protein phosphatase inhibitors Calyculin A (CL-A) and Okadaic Acid (OA). Looking for the phosphatase involved, we found that protein phosphatase 2A (PP2A) induced HIPK2 degradation, as evidenced by directly activating PP2A with FTY720 or by silencing PP2A with siRNA in HG condition. The effect of PP2A on HIPK2 protein degradation could be in part due to hypoxia-inducible factor-1 (HIF-1) activity which has been previously shown to induce HIPK2 proteasomal degradation through several ubiquitin ligases. Validation analysed performed with HIF-1α dominant negative or with silencing of Siah2 ubiquitin ligase clearly showed rescue of HG-induced HIPK2 degradation. These findings demonstrate how hyperglycemia, through a complex protein cascade, induced HIPK2 downregulation and consequently impaired p53 apoptotic activity, revealing a novel link between diabetes/obesity and tumor resistance to therapies

    Reduced chemotherapeutic sensitivity in high glucose condition: implication of antioxidant response

    Get PDF
    Resistance to chemotherapy represents a major obstacle to successful treatment. The generation of reactive oxygen species (ROS) has been directly linked to the cytotoxic effects of several antitumor agents, including Adriamycin (ADR), and modulation of the oxidative balance has been implicated in the development and/or regulation of resistance to chemotherapeutic drugs. We recently showed that high glucose (HG) markedly diminished the cancer cell death induced by anticancer agents such as ADR. In the present study we attempted to evaluate the mechanism that impaired the cytotoxic effect of ADR in HG. We found that, in colon cancer cells, HG attenuated ADR-induced ROS production that consequently diminished ADR-induced H2AX phosphorylation and micronuclei (MN) formation. Mechanistically, HG attenuation of ADR-induced ROS production correlated with increased antioxidant response promoted by NRF2 activity. Thus, pharmacologic inhibition of NRF2 pathway by brusatol re-established the ADR cytotoxic effect impaired by HG. Together, the data provide new insights into chemotherapeutic-resistance mechanisms in HG condition dictated by increased NRF2-induced antioxidant response and how they may be overcome in order to restore chemosensitivity and ADR-induced cell death

    The beneficial effect of Zinc(II) on low-dose chemotherapeutic sensitivity involves p53 activation in wild-type p53-carrying colorectal cancer cells

    Get PDF
    BACKGROUND: Activation of wild-type p53 in response to genotoxic stress occurs through different mechanisms including protein conformation, posttranslational modifications, and nuclear localization, leading to DNA binding to sequence-specific promoters. Zinc ion plays a crucial role in stabilizing p53/DNA binding to induce canonical target genes. Mutant p53 proteins undergo protein misfolding that can be counteracted by zinc. However, whether zinc supplementation might have a beneficial antitumor effect in wild-type p53-carrying cells in combination with drugs, has not been addressed so far. METHODS: In this study we compared the effect of two antitumor treatments: on the one hand wild-type p53-carrying colon cancer cells were treated with low and high doses of chemotherapeutic agent Adriamycin and, on the other hand, Adriamycin was used in combination with ZnCl2. Biochemical and molecular analyses were applied to evaluate p53 activity and biological outcomes in this setting. Finally, the effect of the different combination treatments were applied to assess tumor growth in vivo in tumor xenografts. RESULTS: We found that low-dose Adriamycin did not induce p53 activation in wtp53-carrying colon cancer cells, unless in combination with ZnCl2. Mechanistically, ZnCl2 was a key determinant in inducing wtp53/DNA binding and transactivation of target genes in response to low-dose Adriamycin that used alone did not achieve such effects. Finally, in vivo studies, in a model of wtp53 colon cancer xenograft, show that low-dose Adriamycin did not induce tumor regression unless in combination with ZnCl2 that activated endogenous wtp53. CONCLUSIONS: These results provide evidence that ZnCl2 might be a valuable adjuvant in chemotherapeutic regimens of colorectal cancer harboring wild-type p53, able to both activate p53 and reduce the amount of drugs for antitumor purposes

    p53-Dependent PUMA to DRAM antagonistic interplay as a key molecular switch in cell-fate decision in normal/high glucose conditions

    Get PDF
    BACKGROUND: As an important cellular stress sensor phosphoprotein p53 can trigger cell cycle arrest and apoptosis and regulate autophagy. The p53 activity mainly depends on its transactivating function, however, how p53 can select one or another biological outcome is still a matter of profound studies. Our previous findings indicate that switching cancer cells in high glucose (HG) impairs p53 apoptotic function and the transcription of target gene PUMA. METHODS AND RESULTS: Here we report that, in response to drug adriamycin (ADR) in HG, p53 efficiently induced the expression of DRAM (damage-regulated autophagy modulator), a p53 target gene and a stress-induced regulator of autophagy. We found that ADR treatment of cancer cells in HG increased autophagy, as displayed by greater LC3II accumulation and p62 degradation compared to ADR-treated cells in low glucose. The increased autophagy in HG was in part dependent on p53-induced DRAM; indeed DRAM knockdown with specific siRNA reversed the expression of the autophagic markers in HG. A similar outcome was achieved by inhibiting p53 transcriptional activity with pifithrin-α. DRAM knockdown restored the ADR-induced cell death in HG to the levels obtained in low glucose. A similar outcome was achieved by inhibition of autophagy with cloroquine (CQ) or with silencing of autophagy gene ATG5. DRAM knockdown or inhibition of autophagy were both able to re-induce PUMA transcription in response to ADR, underlining a reciprocal interplay between PUMA to DRAM to unbalance p53 apoptotic activity in HG. Xenograft tumors transplanted in normoglycemic mice displayed growth delay after ADR treatment compared to those transplanted in diabetics mice and such different in vivo response correlated with PUMA to DRAM gene expression. CONCLUSIONS: Altogether, these findings suggest that in normal/high glucose condition a mutual unbalance between p53-dependent apoptosis (PUMA) and autophagy (DRAM) gene occurred, modifying the ADR-induced cancer cell death in HG both in vitro and in vivo

    HIPK2 in Angiogenesis: A Promising Biomarker in Cancer Progression and in Angiogenic Diseases

    No full text
    Angiogenesis is the formation of new blood capillaries taking place from preexisting functional vessels, a process that allows cells to cope with shortage of nutrients and low oxygen availability. Angiogenesis may be activated in several pathological diseases, from tumor growth and metastases formation to ischemic and inflammatory diseases. New insights into the mechanisms that regulate angiogenesis have been discovered in the last years, leading to the discovery of new therapeutic opportunities. However, in the case of cancer, their success may be limited by the occurrence of drug resistance, meaning that the road to optimize such treatments is still long. Homeodomain-interacting protein kinase 2 (HIPK2), a multifaceted protein that regulates different molecular pathways, is involved in the negative regulation of cancer growth, and may be considered a “bona fide” oncosuppressor molecule. In this review, we will discuss the emerging link between HIPK2 and angiogenesis and how the control of angiogenesis by HIPK2 impinges in the pathogenesis of several diseases, including cancer

    HIPK2 as a Novel Regulator of Fibrosis

    No full text
    Fibrosis is an unmet medical problem due to a lack of evident biomarkers to help develop efficient targeted therapies. Fibrosis can affect almost every organ and eventually induce organ failure. Homeodomain-interacting protein kinase 2 (HIPK2) is a protein kinase that controls several molecular pathways involved in cell death and development and it has been extensively studied, mainly in the cancer biology field. Recently, a role for HIPK2 has been highlighted in tissue fibrosis. Thus, HIPK2 regulates several pro-fibrotic pathways such as Wnt/β-catenin, TGF-β and Notch involved in renal, pulmonary, liver and cardiac fibrosis. These findings suggest a wider role for HIPK2 in tissue physiopathology and highlight HIPK2 as a promising target for therapeutic purposes in fibrosis. Here, we will summarize the recent studies showing the involvement of HIPK2 as a novel regulator of fibrosis

    HIPK2 in Colon Cancer: A Potential Biomarker for Tumor Progression and Response to Therapies

    No full text
    Colon cancer, one of the most common and fatal cancers worldwide, is characterized by stepwise accumulation of specific genetic alterations in tumor suppressor genes or oncogenes, leading to tumor growth and metastasis. HIPK2 (homeodomain-interacting protein kinase 2) is a serine/threonine protein kinase and a “bona fide” oncosuppressor protein. Its activation inhibits tumor growth mainly by promoting apoptosis, while its inactivation increases tumorigenicity and resistance to therapies of many different cancer types, including colon cancer. HIPK2 interacts with many molecular pathways by means of its kinase activity or transcriptional co-repressor function modulating cell growth and apoptosis, invasion, angiogenesis, inflammation and hypoxia. HIPK2 has been shown to participate in several molecular pathways involved in colon cancer including p53, Wnt/β-catenin and the newly identified nuclear factor erythroid 2 (NF-E2) p45-related factor 2 (NRF2). HIPK2 also plays a role in tumor–host interaction in the tumor microenvironment (TME) by inducing angiogenesis and cancer-associated fibroblast (CAF) differentiation. The aim of this review is to assess the role of HIPK2 in colon cancer and the underlying molecular pathways for a better understanding of its involvement in colon cancer carcinogenesis and response to therapies, which will likely pave the way for novel colon cancer therapies
    corecore