233 research outputs found

    Chemistry and fluxes of major and trace element from worldwide passive degassing volcanoes: a critical review

    Get PDF
    Volcanic emissions represent one of the most important natural sources of trace elements (e.g. As, Cd, Cu, Hg, Pb, Sb, Tl and Zn) into the atmosphere, sequentially influencing the hydrosphere, lithosphere and biosphere. The human health hazard during episodic volcanic eruptions generally follows from deposition of coarse and fine particles (2.5-10 and < 2.5 ÎŒm) that produces effects such as asthma and lung and respiratory disease. Regarding passive degassing volcanoes, the harmful effects of fluorine fumigation are known both for vegetation (foliar necrosis) and human/animals (fluorosis), but only a few studies have been focused on the effects of potentially toxic trace elements. From a review published work on the metal output from active worldwide volcanoes, 52 publications (the first dating back to the 70’s) were identified, 13 of which on Etna and the others from some of the world most active volcanoes: Mt. St. Helens, Stromboli, Vulcano, Erebus, Merapi, White Island, Kilauea, Popocatepetl, Galeras,Indonesian arc, Satasuma and Masaya. In general, the review shows that available information is scarce and incomplete. We compiled a database both for concentrations and fluxes of 59 chemical elements (major and trace), which allowed us to constrain the compositional and output range. In this study we also present unpublished results from Etna (Italy), Turrialba (Costa Rica), Nyiragongo (Democratic Republic of Congo), Mutnovsky and Gorely (Kamchatka), Aso Asama and Oyama (Japan). Concentrations of major and trace elements were obtained by direct sampling of volcanic gases and aerosols on filters. Sulfur and halogens were collected by using filter-packs methodology, and analyzed by ion chromatography. Untreated filters for particulate were acid digested and analyzed by ICP-OES and ICP-MS. Sulfur to trace element ratios were related to sulfur fluxes to indirectly estimate elemental fluxes. Etna confirms to be one of the greatest point sources in the world. Nyiragongo results to be an additional large source of metals to the atmosphere, especially considering its persistent state of degassing from the lava lake. Turrialba and Gorely also have high emission rates of trace metals considering the global range. Only Mutnovsky volcano show values which are sometimes lower than the range obtained from the review, consistent with its dormant (fumarolic) stage of activity. The accurate estimation of individual and global volcanic emissions of trace metals is still affected by a high level of uncertainty. The latter depends on the large variability in the emission of the different volcanoes, and on their changing stage of activity. Moreover, only few of the potential sources in the world have been directly measured. This preliminary work highlights the need to expand the current dataset including many other active volcanoes for better constraining the global volcanic trace metal fluxes

    Protocols for UV camera volcanic SO2 measurements

    Get PDF
    Ultraviolet camera technology offers considerable promise for enabling 1 Hz timescale acquisitions of volcanic degassing phenomena, providing two orders of magnitude improvements on sampling frequencies from conventionally applied scanning spectrometer systems. This could, for instance enable unprecedented insights into rapid processes, such as strombolian explosions, and non-aliased corroboration with volcano geophysical data. The uptake of this technology has involved disparate methodological approaches, hitherto. As a means of expediting the further proliferation of such systems, we here study these diverse protocols, with the aim of suggesting those we consider optimal. In particular we cover: choice and set up of hardware, calibration for vignetting and for absolute concentrations using quartz SO2 cells, the retrieval algorithm and whether one or two ïŹlters, or indeed cameras, are necessary. This work also involves direct intercomparisons with narrowband observations obtained with a scanning spectrometer system, employing a differential optical absorption spectroscopic evaluation routine, as a means of methodological validation

    Passive vs. active degassing modes at an open-vent volcano (Stromboli, Italy)

    Get PDF
    We report here on a UV-camera based field experiment performed on Stromboli volcano during 7 days in 2010 and 2011, aimed at obtaining the very first simultaneous assessment of all the different forms (passive and active) of SO2 release from an open-vent volcano. Using the unprecedented spatial and temporal resolution of the UV camera, we obtained a 0.8 Hz record of the total SO2 flux from Stromboli over a timeframe of 14 h, which ranged between 0.4 and 1.9 kg s 1 around a mean value of 0.7 kg s 1 and we concurrently derived SO2 masses for more than 130 Strombolian explosions and 50 gas puffs. From this, we show erupted SO2 masses have a variability of up to one order of magnitude, and range between 2 and 55 kg (average 20 kg), corresponding to a time integrated flux of 0.0570.01 kg s 1. Our experimental constraints on individual gas puff mass (0.03–0.42 kg of SO2, averaging 0.19 kg) are the first of their kind, equating to an emission rate ranging from 0.02 to 0.27 kg s 1. On this basis, we conclude that puffing is two times more efficient than Strombolian explosions in the magmatic degassing process, and that active degassing (explosionsĂŸpuffing) accounts for 23% (ranging from 10% to 45%) of the volcano’s total SO2 flux, e.g., passive degassing between the explosions contributes the majority ( 77%) of the released gas. We furthermore integrate our UV camera gas data for the explosions and puffs, with independent geophysical data (infrared radiometer data and very long period seismicity), to offer key and novel insights into the degassing dynamics within the shallow conduit systems of this open-vent volcano

    VOLCANIC CO2 FLUX MEASUREMENTS BY TUNABLE DIODE LASER ABSORPTION SPECTROSCOPY

    Get PDF
    Introduction In the last decades, the use of near-infrared room-temperature diode lasers for gas sensing has grown significantly. The use of these devices, for instance in combination with optical fibers, is particularly convenient for volcanic monitoring applications [1,2]. Here, we report on the first results of the application of an open-path infrared tunable laser-based at Campi Flegrei (Southern Italy). Such Diode-laser-based measurements were performed, during two field campaigns (october 2012, and january 2013), in the attempt to obtain novel information on the current degassing unrest of Solfatara and Pisciarelli fumarolic fields. Results and Discussion At each site, we used an ad-hoc designed measurement geometry, using a TDLS (a Gas Finder unit) and several differently positioned retroreflectors (mirrors), to scan the fumaroles’ plume from different angles and distances. From post-processing of the data (acquired at 1 hz), we derived tomographic maps of CO2 concentrations in the plume and, by integration and combination with plume transport speed (from video cameras), we inferred the CO2 flux directly. The so-calculated fluxes, the first ever obtained at Campi Flegrei, average of 500 tons/day, and support a significant contribution of fumaroles to the total CO2 budget. The cumulative (fumarole [this study] +soil [3]) CO2 output from Campi Flegrei is finally evaluated at 1600 tons/day. [1] Gianfrani L. et al. (2000). Appl. Phys. B-Rapid Common. 70, 467-470. [2] Richter D. et al (2002), Optics and Lasers in Engineering, Volume 37, Issues 2–3, Pages 171-186. [3] Chiodini G. et al. (2010), Journal of Geophysical Research, Volume 115, B03205, doi:10.1029/2008JB006258

    Carbon release from Large Igneous Province magmas estimated from trace element-gas correlations

    Get PDF
    Large Igneous Provinces (LIPs) facilitate massive transfers of CO2 and other volatiles from the mantle to atmosphere, contributing to past global warming and environmental disruption. However, the scale and evolution of magmatic CO2 fluxes during these events remain uncertain due to the tendency of CO2 to degas deep in magmatic systems. Here we estimate LIP CO2 using an approach based on an observed correlation between gas CO2/S ratios and trace elements in volcanic rocks. We apply this method to a compilation of published geochemical data for tholeiitic LIP lavas and to a new major and trace element dataset for alkaline rocks from the Siberian Traps. Our results indicate that CO2/S and therefore CO2 in tholeiitic and alkaline magma suites from LIPs span 1–2 orders of magnitude, emphasizing that changing CO2 concentrations can combine with magma flux to drive strong variations in CO2 release through the evolution of LIP magmatism

    Numerical modelling of gas-water-rock interactions in volcanic-hydrothermal environment: the Ischia Island (Southern Italy) case study.

    Get PDF
    Hydrothermal systems hosted within active volcanic systems represent an excellent opportunity to investigate the interactions between aquifer rocks, infiltrating waters and deep-rising magmatic fluids, and thus allow deriving information on the activity state of dormant volcanoes. From a thermodynamic perspective, gas-water-rock interaction processes are normally far from equilibrium, but can be represented by an array of chemical reactions, in which irreversible mass transfer occurs from host rock minerals to leaching solutions, and then to secondary hydrothermal minerals. While initially developed to investigate interactions in near-surface groundwater environments, the reaction path modeling approach of Helgeson and co-workers can also be applied to quantitative investigation of reactions in high T-P environments. Ischia volcano, being the site of diffuse hydrothermal circulation, is an ideal place where to test the application of reaction-path modeling. Since its last eruption in 1302 AD, Ischia has shown a variety of hydrothermal features, including fumarolic emissions, diffuse soil degassing and hot waters discharges. These are the superficial manifestation of an intense hydrothermal circulation at depth. A recent work has shown the existence of several superposed aquifers; the shallowest (near to boiling) feeds the numerous surface thermal discharges, and is recharged by both superficial waters and deeper and hotter (150-260° C) hydrothermal reservoir fluids. Here, we use reaction path modelling (performed by using the code EQ3/6) to quantitatively constrain the compositional evolution of Ischia thermal fluids during their hydrothermal flow. Simulations suggest that compositions of Ischia groundwaters are buffered by interactions between reservoir rocks and recharge waters (meteoric fluids variably mixed - from 2 to 80% - with seawater) at shallow aquifer conditions. A CO2 rich gaseous phase is also involved in the interaction processes (fCO2 = 0.4-0.6 bar). Overall, our model calculations satisfactorily reproduce the main chemical features of Ischia groundwaters. In the model runs, attainment of partial to complete equilibrium with albite and K-feldspar fixes the Na/K ratios of the model solutions at values closely matching those of natural samples. Precipitation of secondary phases, mainly clay minerals (smectite and saponite) and zeolites (clinoptilolite), during the reaction path is able to well explain the large Mg-depletions which characterise Ischia thermal groundwaters; while pyrite and troilite are shown to control sulphur abundance in aqueous solutions. SiO2(aq) contents in model simulations fit those measured in groundwaters and are being buffered by the formation of quartz polymorphs and Si-bearing minerals. Finally, our simulations are able to reproduce redox conditions and Fe-depletion trends of natural samples. We conclude that reaction path modelling is an useful tool for quantitative exploration of chemical process within volcano-hosted hydrothermal systems

    Quantitative models of hydrothermal fluid–mineral reaction:The Ischia case

    Get PDF
    The intricate pathways of fluid–mineral reactions occurring underneath active hydrothermal systems are explored in this study by applying reaction path modelling to the Ischia case study. Ischia Island, in Southern Italy, hosts a well-developed and structurally complex hydrothermal system which, because of its heterogeneity in chemical and physical properties, is an ideal test sites for evaluating potentialities/limitations of quantitative geochemical models of hydrothermal reactions. We used the EQ3/6 software package, version 7.2b, to model reaction of infiltrating waters (mixtures of meteoric water and seawater in variable proportions) with Ischia’s reservoir rocks (the Mount Epomeo Green Tuff units; MEGT). The mineral assemblage and composition of such MEGT units were initially characterised by ad hoc designed optical microscopy and electron microprobe analysis, showing that phenocrysts (dominantly alkali–feldspars and plagioclase) are set in a pervasively altered (with abundant clay minerals and zeolites) groundmass. Reaction of infiltrating waters with MEGT minerals was simulated over a range of realistic (for Ischia) temperatures (95–260° C) and CO2 fugacities (10 ^-0.2 to 10^0.5) bar. During the model runs, a set of secondary minerals (selected based on independent information from alteration minerals’ studies) was allowed to precipitate from model solutions, when saturation was achieved. The compositional evolution of model solutions obtained in the 95–260°C runs were finally compared with compositions of Ischia’s thermal groundwaters, demonstrating an overall agreement. Our simulations, in particular, well reproduce the Mg-depleting maturation path of hydrothermal solutions, and have end-of-run model solutions whose Na–K–Mg compositions well reflect attainment of full-equilibrium conditions at run temperature. High-temperature (180–260° C) model runs are those best matching the Na–K–Mg compositions of Ischia’s most chemically mature water samples, supporting quenching of deep-reservoir conditions for these surface manifestations; whilst Fe, SiO2 and, to a lesser extent, SO4 contents of natural samples are better reproduced in low-temperature (95°C) runs, suggesting that these species reflect conditions of water–rock interaction in the shallow hydrothermal environment. The ability of model runs to reproduce the compositional features of Ischia’s thermal manifestations, demonstrated here, adds supplementary confidence on reaction path modelling as a realistic and insightful representation of mineral–fluid hydrothermal reactions. Our results, in particular, demonstrate the significant impact of host rock minerals’ assemblage in governing the paths and trends of hydrothermal fluids’ maturation

    Unmanned aerial vehicle measurements of volcanic carbon dioxide fluxes

    Get PDF
    We report the first measurements of volcanic gases with an unmanned aerial vehicle (UAV). The data were collected at La Fossa crater, Vulcano, Italy, during April 2007, with a helicopter UAV of 3 kg payload, carrying an ultraviolet spectrometer for remotely sensing the SO2 flux (8.5 Mg d−1), and an infrared spectrometer, and electrochemical sensor assembly for measuring the plume CO2/SO2 ratio; by multiplying these data we compute a CO2 flux of 170 Mg d−1. Given the deeper exsolution of carbon dioxide from magma, and its lower solubility in hydrothermal systems, relative to SO2, the ability to remotely measure CO2 fluxes is significant, with promise to provide more profound geochemical insights, and earlier eruption forecasts, than possible with SO2 fluxes alone: the most ubiquitous current source of remotely sensed volcanic gas data

    Fast tracking of wind speed with a differential absorption LiDAR system: First results of an experimental campaign at Stromboli volcano

    Get PDF
    Carbon dioxide (CO2) is considered a precursor gas of volcanic eruptions by volcanologists. Monitoring the anomalous release of this parameter, we can retrieve useful information for the mitigation of volcanic hazards, such as for air traffic security. From a dataset collected during the Stromboli volcano field campaign, an assessment of the wind speed, in both horizontal and vertical paths, performing a fast tracking of this parameter was retrieved. This was determined with a newly designed shot-per-shot differential absorption LiDAR system operated in the near-infrared spectral region due to the simultaneous reconstruction of CO2 concentrations and wind speeds, using the same sample of LiDAR returns. A correlation method was used for the wind speed retrieval in which the transport of the spatial inhomogeneities of the aerosol backscattering coefficient, along the optical path of the system, was analyzed
    • 

    corecore