68 research outputs found

    Dna tumor viruses in human cancer: study of polyomavirus and papillomavirus infections in tumors of different origin.

    Get PDF
    I virus tumorali inducono oncogenesi nel loro ospite naturale o in sistemi animali sperimentali, manipolando diverse vie cellulari. Ad oggi, sono stati identificati sette virus capaci di causare specifici tumori umani. Inoltre HPV, JCV ed SV40, sono stati associati con un grande numero di tumori umani in sedi corporee non convenzionali, ma, nonostante molti anni di ricerca, nessuna eziologia virale è stata ancora confermata. Lo scopo di questo studio è stato di valutare la presenza ed il significato sia di JCV ed SV40 in tumori ossei umani, e di HPV nel carcinoma della mammella (BC), galattoforectomie (GF), secrezioni mammarie patologiche (ND) e glioblastoma multiforme (GBM). Tecniche di biologia molecolare sono state impiegate per esaminare campioni di tessuto tumorale di 70 tumori ossei (20 osteosarcomi [OS], 20 tumori a cellule giganti [TCG], 30 condrosarcomi [CS]), 168 BCs , 30 GFs, 59 GBM e 30 campioni di ND. Il genoma di SV40 e JCV è stato trovato nel 70% dei CS + 20% degli OS, e nel 13% dei CS +10% dei TCG, rispettivamente. Il DNA di HPV è stato rilevato nel 30% dei pazienti con BC, nel 27% dei campioni GF e nel 13% dei NDs. HPV16 è stato il genotipo maggiormente osservato in tutti questi campioni, seguito da HPV18 e HPV35. Inoltre, il DNA di HPV è stato trovato nel 22% dei pazienti con GBM, in questo tumore HPV6 era il tipo più frequentemente rilevato, seguito da HPV16. L’ ISH ha mostrato che il DNA di HPV è situato all’interno di cellule tumorali mammarie e di GBM. I nostri risultati suggeriscono un possibile ruolo di JCV, SV40 e HPV in questi tumori, se non come induttori come promotori del processo neoplastico, tuttavia diversi criteri devono ancora essere soddisfatti prima di chiarirne il ruolo.Tumor viruses induce oncogenesis in their natural host or in experimental animal systems by manipulating an array of different cellular pathways. To date, seven human viruses have been identified to cause or contribute to specific human cancers. Furthermore some viruses such as HPV, JCV and SV40, have been associated with a large number of human cancers in non conventional body sites; but, in spite of many years of research, no viral etiology have been confirmed for these tumors. The aim of this study was to evaluate the presence and significance of both JCV and SV40 in human bone tumors, and HPV in breast carcinoma (BC), galactophorectomy (GF), pathological nipple discharge (ND) and glioblastoma multiforme (GBM). Molecular biology techniques (PCR) and chromogenic in situ hybridization (ISH) were employed to examine specimens of tumor tissue from 70 bone tumors (20 Osteosarcomas[OS], 20 Giant Cell Tumors [TCG], 30 Condrosarcomas [CS]), 168 BCs, 30 GFs, 59 GBMs and 30 specimens of ND. SV40 and JCV genomes were found in70% of CS + 20% of OS, and in 13% of CS +10% of TCG, respectively. HPV DNA was detected in 30% of BC patients, in 27% of GF specimens and in 13% of NDs. HPV16 was the most common type observed in all these samples, attended by HPV18 and HPV35. In addition, HPV DNA was found in 22% of patients with GBM; in this tumor HPV6 was the most frequent type detected, followed by HPV16. ISH data showed that HPV DNA was located in breast and GBM tumor cells. Our results suggest a possible role of JCV, SV40 and HPV in the induction of these different tumors. However, detection of viruses in human tumors does not prove that they cause those malignancies. Several different criteria need to be met before viral etiology could be established

    Exosomal transfer of miR-126 promotes the anti-tumour response in malignant mesothelioma: Role of miR-126 in cancer-stroma communication

    Get PDF
    none11MiR-126 has been shown to suppress malignant mesothelioma (MM) by targeting cancer-related genes without inducing toxicity or histopathological changes. Exosomes provide the opportunity to deliver therapeutic cargo to cancer stroma. Here, a tumour stromal model composed of endothelial cells (HUVECs), fibroblasts (IMR-90 cells), non-malignant mesothelial cells (Met-5A cells) and MM cells (H28 and MM-B1 cells) was used. The cells were treated with exosomes from HUVECs carrying endogenous (exo-HUVEC) and enriched miR-126 (exo-HUVECmiR-126), and the uptake/turnover of exosomes; miR-126 distribution within the stroma; and effect of miR-126 on cell signalling, angiogenesis and cell proliferation were evaluated. Based on the sensitivity of MM cells to exo-HUVEC miR-126 treatment, miR-126 was distributed differently across stromal cells. The reduced miR-126 content in fibroblasts in favour of endothelial cells reduced angiogenesis and suppressed cell growth in an miR-126-sensitive environment. Conversely, the accumulation of miR-126 in fibroblasts and the reduced level of miR-126 in endothelial cells induced tube formation in an miR-126-resistant environment via VEGF/EGFL7 upregulation and IRS1-mediated cell proliferation. These findings suggest that transfer of miR-126 via HUVEC-derived exosomes represents a novel strategy to inhibit angiogenesis and cell growth in MM.noneMonaco, Federica; Gaetani, Simona; Alessandrini, Federica; Tagliabracci, Adriano; Bracci, Massimo; Valentino, Matteo; Neuzil, Jiri; Amati, Monica; Bovenzi, Massimo; Tomasetti, Marco; Santarelli, LoryMonaco, Federica; Gaetani, Simona; Alessandrini, Federica; Tagliabracci, Adriano; Bracci, Massimo; Valentino, Matteo; Neuzil, Jiri; Amati, Monica; Bovenzi, Massimo; Tomasetti, Marco; Santarelli, Lor

    Cytochalasin B Modulates Nanomechanical Patterning and Fate in Human Adipose-Derived Stem Cells

    Get PDF
    Cytoskeletal proteins provide architectural and signaling cues within cells. They are able to reorganize themselves in response to mechanical forces, converting the stimuli received into specific cellular responses. Thus, the cytoskeleton influences cell shape, proliferation, and even differentiation. In particular, the cytoskeleton affects the fate of mesenchymal stem cells (MSCs), which are highly attractive candidates for cell therapy approaches due to their capacity for self-renewal and multi-lineage differentiation. Cytochalasin B (CB), a cyto-permeable mycotoxin, is able to inhibit the formation of actin microfilaments, resulting in direct effects on cell biological properties. Here, we investigated for the first time the effects of different concentrations of CB (0.1–10 μM) on human adipose-derived stem cells (hASCs) both after 24 h (h) of CB treatment and 24 h after CB wash-out. CB influenced the metabolism, proliferation, and morphology of hASCs in a dose-dependent manner, in association with progressive disorganization of actin microfilaments. Furthermore, the removal of CB highlighted the ability of cells to restore their cytoskeletal organization. Finally, atomic force microscopy (AFM) revealed that cytoskeletal changes induced by CB modulated the viscoelastic properties of hASCs, influencing their stiffness and viscosity, thereby affecting adipogenic fat

    Extraction, purification and in vitro assessment of the antioxidant and anti-inflammatory activity of policosanols from non-psychoactive Cannabis sativa L

    Get PDF
    Policosanols (PCs) are bioactive compounds extracted from different natural waxes. In this work, the purification, characterization and assessment of the antioxidant and anti-inflammatory activity was carried out on PCs from an innovative source, i.e. a waxy material from supercriticalfluid extraction (SFE) of non -psychoactive Cannabis sativa L. (hemp) inflorescences. Starting from this material, PCs were obtained by microwave -assisted trans -esterification and hydrolysis, followed by preparative liquid chromatography under normal phase conditions. The purified product was characterized using high-performance liquid chromatography (HPLC) with an evaporative light scattering detector (ELSD). In vitro cell -free and cell -based antioxidant and antiinflammatory assays were then performed to assess their bioactivity

    IL-12 protects from psoriasiform skin inflammation

    Get PDF
    Neutralization of the common p40-subunit of IL-12/23 in psoriasis patients has led to a breakthrough in the management of moderate to severe disease. Aside from neutralizing IL-23, which is thought to be responsible for the curative effect, anti-p40 therapy also interferes with IL-12 signalling and type 1 immunity. Here we dissect the individual contribution of these two cytokines to the formation of psoriatic lesions and understand the effect of therapeutic co-targeting of IL-12 and IL-23 in psoriasis. Using a preclinical model for psoriatic plaque formation we show that IL-12, in contrast to IL-23, has a regulatory function by restraining the invasion of an IL-17-committed γδT (γδT17) cell subset. We discover that IL-12 receptor signalling in keratinocytes initiates a protective transcriptional programme that limits skin inflammation, suggesting that collateral targeting of IL-12 by anti-p40 monoclonal antibodies is counterproductive in the therapy of psoriasis

    Social cognition in people with schizophrenia: A cluster-analytic approach

    Get PDF
    Background The study aimed to subtype patients with schizophrenia on the basis of social cognition (SC), and to identify cut-offs that best discriminate among subtypes in 809 out-patients recruited in the context of the Italian Network for Research on Psychoses. Method A two-step cluster analysis of The Awareness of Social Inference Test (TASIT), the Facial Emotion Identification Test and Mayer-Salovey-Caruso Emotional Intelligence Test scores was performed. Classification and regression tree analysis was used to identify the cut-offs of variables that best discriminated among clusters. Results We identified three clusters, characterized by unimpaired (42%), impaired (50.4%) and very impaired (7.5%) SC. Three theory-of-mind domains were more important for the cluster definition as compared with emotion perception and emotional intelligence. Patients more able to understand simple sarcasm (14 for TASIT-SS) were very likely to belong to the unimpaired SC cluster. Compared with patients in the impaired SC cluster, those in the very impaired SC cluster performed significantly worse in lie scenes (TASIT-LI <10), but not in simple sarcasm. Moreover, functioning, neurocognition, disorganization and SC had a linear relationship across the three clusters, while positive symptoms were significantly lower in patients with unimpaired SC as compared with patients with impaired and very impaired SC. On the other hand, negative symptoms were highest in patients with impaired levels of SC. Conclusions If replicated, the identification of such subtypes in clinical practice may help in tailoring rehabilitation efforts to the person's strengths to gain more benefit to the person

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three genomic nomenclature systems to all sequence data from the World Health Organization European Region available until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation, compare the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2

    ETV7 can trigger breast cancer chemoresistance

    Get PDF
    Chemotherapy still represents the most common and sometimes the only possible therapeutic option for advanced breast cancer. Its efficacy is profoundly threatened by intrinsic or acquired chemoresistance, which, in some cases, can be unexpectedly promoted by the chemotherapeutic drugs used. ETV7, a poorly characterized ETS factor with no established roles in breast cancer so far, is reported here to be activated at the transcriptional level by chemotherapy and be able to promote breast cancer cells chemoresistance. This project proposes a novel drug resistance circuitry in breast cancer cells, specifically to Doxorubicin, governed by the ETV7 repressive action on DNAJC15, a gene whose low expression was previously associated with drug resistance in breast and ovarian cancer. Moreover, the impact of ETV7 in causing drug resistance is proved here to extend also to another type of drug, 5-Fluorouracil (5-FU), a chemotherapeutic agent commonly used in combination with Doxorubicin for breast cancer treatment. In this case, additional novel ETV7 targets (DPYD and DPEP1) were established and can represent important mediators for ETV7-mediated resistance to 5-FU. Additional relevant data, relative to biological implications for ETV7 in breast cancer progression, is provided here by the ETV7 ChIP-seq analysis, which reveals the first reported in vivo mapping of ETV7 occupancy. Through ChIP-seq novel ETV7 direct targets have been identified, some of them yet unexplored in breast cancer; notably, their expression revealed to be capable of predicting breast cancer patients outcome. Furthermore, a possible control exerted by ETV7 on the TGF-β pathway, discovered by enrichment analysis on ChIP-seq ETV7 targets, suggests a different and opposing role for ETV7 activation in either advanced stage cancers or normal and early stage breast cancers. Taken collectively, the results from this project propose an important key role for ETV7 in triggering breast cancer multi-drug resistance phenotype in response to chemotherapy, by controlling the expression of specific targets

    Evaluation of the Ion AmpliSeq SARS-CoV-2 Research Panel by Massive Parallel Sequencing

    No full text
    Deep knowledge of the genetic features of SARS-CoV-2 is essential to track the ongoing pandemic through different geographical areas and to design and develop early diagnostic procedures, therapeutic strategies, public health interventions, and vaccines. We describe protocols and first results of the Ion AmpliSeq&trade; SARS-CoV-2 Research Panel by a massively parallel sequencing (MPS) assay. The panel allows for targeted sequencing by overlapping amplicons, thereby providing specific, accurate, and high throughput analysis. A modified reverse transcription reaction, which consists of the use of a SARS-CoV-2 specific primers pool from the Ion AmpliSeq SARS-CoV-2 Research Panel, was assessed in order to promote viral RNA specific reverse transcription. The aim of this study was to evaluate the effectiveness of the Ion AmpliSeq&trade; SARS-CoV-2 Research Panel in sequencing the entire viral genome in different samples. SARS-CoV-2 sequence data were obtained from ten viral isolates and one nasopharyngeal swab from different patients. The ten isolate samples amplified with 12 PCR cycles displayed high mean depth values compared to those of the two isolates amplified with 20 PCR cycles. High mean depth values were also obtained for the nasopharyngeal swab processed by use of a target-specific reverse transcription. The relative depth of coverage (rDoC) analysis showed that when 12 PCR cycles were used, all target regions were amplified with high sequencing coverage, while in libraries amplified at 20 cycles, a poor uniformity of amplification, with absent or low coverage of many target regions, was observed. Our results show that the Ion AmpliSeq SARS-CoV-2 Research Panel can achieve rapid and high throughput SARS-CoV-2 whole genome sequencing from 10 ng of DNA-free viral RNA from isolates and from 1 ng of DNA-free viral RNA from a nasopharyngeal swab using 12 PCR cycles for library amplification. The modified RT-PCR protocol yielded superior results on the nasopharyngeal swab compared to the reverse transcription reaction set up according to the manufacturer&rsquo;s instructions
    corecore