22 research outputs found

    Combined effect of lead exposure and allostatic load on cardiovascular disease mortality-a preliminary study

    Get PDF
    This study explores the combined effect of lead (Pb) exposure and an index of chronic physiological stress on cardiovascular disease mortality using data from the National Health and Nutrition Examination Survey (NHANES) 1999-2008 linked to 1999-2014 National Death Index data. Chronic physiological stress was measured using the allostatic load (AL) index, which was formed by analyzing markers from the cardiovascular, inflammatory, and metabolic systems, with Pb levels, assessed using blood lead levels (BLL). The dataset was analyzed with statistical techniques to explore (a) the relationship between Pb exposure and AL, and (b) the combined role of Pb and AL on cardiovascular disease mortality. Results indicated that AL was more elevated in those with BLLs above the 50th percentile in the US population and that those with elevated AL were more likely to have high BLL. Finally, the interaction of AL and BLL significantly increased the likelihood of cardiovascular disease mortality. These findings highlight the need for considering the totality of exposures experienced by populations to build holistic programs to prevent Pb exposure and reduce stressors to promote optimal health outcomes and reduce cardiovascular mortality risk

    Environmental Research and Public Health Communication Pathogens in Ornamental Waters: A Pilot Study

    Get PDF
    Abstract: In parks, ornamental waters of easy access and populated with animals are quite attractive to children and yet might hide threats to human health. The present work focuses on the microbiota of the ornamental waters of a Lisboa park, characterized during 2015. The results show a dynamic microbiota integrating human pathogens such as Klebsiella pneumoniae, Aeromonas spp. and Enterobacter spp., and also antibiotic resistant bacteria. K. pneumoniae and Aeromonas spp. were present as planktonic and biofilm organized bacteria. In vitro K. pneumoniae and Aeromonas spp. showed an enhanced ability to assemble biofilm at 25ËťC than at 37ËťC. Bacteria recovered from biofilm samples showed an increased antibiotic resistance compared to the respective planktonic counterparts

    Relative Pesticide and Exposure Route Contribution to Aggregate and Cumulative Dose in Young Farmworker Children

    Get PDF
    The Child-Specific Aggregate Cumulative Human Exposure and Dose (CACHED) framework integrates micro-level activity time series with mechanistic exposure equations, environmental concentration distributions, and physiologically-based pharmacokinetic components to estimate exposure for multiple routes and chemicals. CACHED was utilized to quantify cumulative and aggregate exposure and dose estimates for a population of young farmworker children and to evaluate the model for chlorpyrifos and diazinon. Micro-activities of farmworker children collected concurrently with residential measurements of pesticides were used in the CACHED framework to simulate 115,000 exposure scenarios and quantify cumulative and aggregate exposure and dose estimates. Modeled metabolite urine concentrations were not statistically different than concentrations measured in the urine of children, indicating that CACHED can provide realistic biomarker estimates. Analysis of the relative contribution of exposure route and pesticide indicates that in general, chlorpyrifos non-dietary ingestion exposure accounts for the largest dose, confirming the importance of the micro-activity approach. The risk metrics computed from the 115,000 simulations, indicate that greater than 95% of these scenarios might pose a risk to children’s health from aggregate chlorpyrifos exposure. The variability observed in the route and pesticide contributions to urine biomarker levels demonstrate the importance of accounting for aggregate and cumulative exposure in establishing pesticide residue tolerances in food

    Estimating Health Risks to Children Associated with Recreational Play on Oil Spill-Contaminated Beaches

    No full text
    The human health impact from exposure to contaminated shorelines following an oil spill event has been investigated to some extent. However, the health risks to children have largely been characterized through the use of surveys and extrapolation from adult health outcomes. There is limited information on children’s behaviors during beach play requiring assumptions made based on observations from play activities in home settings. The Beach Exposure and Child Health Study (BEACHES) quantified specific beach activities that can be used to inform human health risk assessments of children playing on beaches impacted by oil spills. The results of this study characterize children’s risk of cancer from exposure to oil spill chemicals by incorporating exposure-related information collected from the BEACHES study and by assuming oral, dermal, and inhalation exposure routes. Point risk estimates are compared with a previous, similar study that applied default exposure parameter values obtained from the published literature. The point risk estimates informed by BEACHES data are one order of magnitude lower compared with the previous risk assessment, with dermal exposures the overall risk driver in both. Additional Monte Carlo simulations evaluating the BEACHES data provide ranges of health risks with the highest estimates associated with dermal and oral exposure routes
    corecore