2 research outputs found

    Feasibility and usability of remote monitoring in Alzheimer’s disease

    Get PDF
    Introduction: Remote monitoring technologies (RMTs) can measure cognitive and functional decline objectively at-home, and offer opportunities to measure passively and continuously, possibly improving sensitivity and reducing participant burden in clinical trials. However, there is skepticism that age and cognitive or functional impairment may render participants unable or unwilling to comply with complex RMT protocols. We therefore assessed the feasibility and usability of a complex RMT protocol in all syndromic stages of Alzheimer’s disease and in healthy control participants.Methods: For 8 weeks, participants (N=229) used two activity trackers, two interactive apps with either daily or weekly cognitive tasks, and optionally a wearable camera. A subset of participants participated in a 4-week sub-study (N=45) using fixed at-home sensors, a wearable EEG sleep headband and a driving performance device. Feasibility was assessed by evaluating compliance and drop-out rates. Usability was assessed by problem rates (e.g., understanding instructions, discomfort, forgetting to use the RMT or technical problems) as discussed during bi-weekly semi-structured interviews.Results: Most problems were found for the active apps and EEG sleep headband. Problem rates increased and compliance rates decreased with disease severity, but the study remained feasible.Conclusions: This study shows that a highly complex RMT protocol is feasible, even in a mild-to-moderate AD population, encouraging other researchers to use RMTs in their study designs. We recommend evaluating the design of individual devices carefully before finalizing study protocols, considering RMTs which allow for real-time compliance monitoring, and engaging the partners of study participants in the research.<br/

    A Semantic Framework to Detect Problems in Activities of Daily Living Monitored through Smart Home Sensors

    No full text
    Activities of daily living (ADLs) are fundamental routine tasks that the majority of physically and mentally healthy people can independently execute. In this paper, we present a semantic framework for detecting problems in ADLs execution, monitored through smart home sensors. In the context of this work, we conducted a pilot study, gathering raw data from various sensors and devices installed in a smart home environment. The proposed framework combines multiple Semantic Web technologies (i.e., ontology, RDF, triplestore) to handle and transform these raw data into meaningful representations, forming a knowledge graph. Subsequently, SPARQL queries are used to define and construct explicit rules to detect problematic behaviors in ADL execution, a procedure that leads to generating new implicit knowledge. Finally, all available results are visualized in a clinician dashboard. The proposed framework can monitor the deterioration of ADLs performance for people across the dementia spectrum by offering a comprehensive way for clinicians to describe problematic behaviors in the everyday life of an individual
    corecore