19 research outputs found

    The mRubyFT Protein, Genetically Encoded Blue-to-Red Fluorescent Timer.

    Full text link
    peer reviewedGenetically encoded monomeric blue-to-red fluorescent timers (mFTs) change their fluorescent color over time. mCherry-derived mFTs were used for the tracking of the protein age, visualization of the protein trafficking, and labeling of engram cells. However, the brightness of the blue and red forms of mFTs are 2-3- and 5-7-fold dimmer compared to the brightness of the enhanced green fluorescent protein (EGFP). To address this limitation, we developed a blue-to-red fluorescent timer, named mRubyFT, derived from the bright mRuby2 red fluorescent protein. The blue form of mRubyFT reached its maximum at 5.7 h and completely transformed into the red form that had a maturation half-time of 15 h. Blue and red forms of purified mRubyFT were 4.1-fold brighter and 1.3-fold dimmer than the respective forms of the mCherry-derived Fast-FT timer in vitro. When expressed in mammalian cells, both forms of mRubyFT were 1.3-fold brighter than the respective forms of Fast-FT. The violet light-induced blue-to-red photoconversion was 4.2-fold less efficient in the case of mRubyFT timer compared to the same photoconversion of the Fast-FT timer. The timer behavior of mRubyFT was confirmed in mammalian cells. The monomeric properties of mRubyFT allowed the labeling and confocal imaging of cytoskeleton proteins in live mammalian cells. The X-ray structure of the red form of mRubyFT at 1.5 Å resolution was obtained and analyzed. The role of the residues from the chromophore surrounding was studied using site-directed mutagenesis

    Counterbalance of Stability and Activity Observed for Thermostable Transaminase from Thermobaculum terrenum in the Presence of Organic Solvents

    No full text
    Pyridoxal-5’-phosphate-dependent transaminases catalyze stereoselective amination of organic compounds and are highly important for industrial applications. Catalysis by transaminases often requires organic solvents to increase the solubility of reactants. However, natural transaminases are prone to inactivation in the presence of water-miscible organic solvents. Here, we present the solvent tolerant thermostable transaminase from Thermobaculum terrenum (TaTT) that catalyzes transamination between L-leucine and alpha-ketoglutarate with an optimum at 75 °C and increases the activity ~1.8-fold upon addition of 15% dimethyl sulfoxide or 15% methanol at high but suboptimal temperature, 50 °C. The enhancement of the activity correlates with a decrease in the thermal denaturation midpoint temperature. The blue-shift of tryptophan fluorescence suggested that solvent molecules penetrate the hydration shell of the enzyme. Analysis of hydrogen bonds in the TaTT dimer revealed a high number of salt bridges and surface hydrogen bonds formed by backbone atoms. The latter are sensitive to the presence of organic solvents; they rearrange, conferring the relaxation of some constraints inherent to a thermostable enzyme at low temperatures. Our data support the idea that the counterbalance of stability and activity is crucial for the catalysis under given conditions; the obtained results may be useful for fine-tuning biocatalyst efficiency

    Combined Structural and Computational Study of the mRubyFT Fluorescent Timer Locked in Its Blue Form

    No full text
    The mRubyFT is a monomeric genetically encoded fluorescent timer based on the mRuby2 fluorescent protein, which is characterized by the complete maturation of the blue form with the subsequent conversion to the red one. It has higher brightness in mammalian cells and higher photostability compared with other fluorescent timers. A high-resolution structure is a known characteristic of the mRubyFT with the red form chromophore, but structural details of its blue form remain obscure. In order to obtain insight into this, we obtained an S148I variant of the mRubyFT (mRubyFTS148I) with the blocked over time blue form of the chromophore. X-ray data at a 1.8 Å resolution allowed us to propose a chromophore conformation and its interactions with the neighboring residues. The imidazolidinone moiety of the chromophore is completely matured, being a conjugated π-system. The methine bridge is not oxidized in the blue form bringing flexibility to the phenolic moiety that manifests itself in poor electron density. Integration of these data with the results of molecular dynamic simulation disclosed that the OH group of the phenolic moiety forms a hydrogen bond with the side chain of the T163 residue. A detailed comparison of mRubyFTS148I with other available structures of the blue form of fluorescent proteins, Blue102 and mTagBFP, revealed a number of characteristic differences. Molecular dynamic simulations with the combined quantum mechanic/molecular mechanic potentials demonstrated that the blue form exists in two protonation states, anion and zwitterion, both sharing enolate tautomeric forms of the C=C–O− fragment. These two forms have similar excitation energies, as evaluated by calculations. Finally, excited state molecular dynamic simulations showed that excitation of the chromophore in both protonation states leads to the same anionic fluorescent state. The data obtained shed light on the structural features and spectral properties of the blue form of the mRubyFT timer

    Elucidation of the Conformational Transition of Oligopeptidase B by an Integrative Approach Based on the Combination of X-ray, SAXS, and Essential Dynamics Sampling Simulation

    No full text
    Oligopeptidase B (OPB) is the least studied group from the prolyl oligopeptidase family. OPBs are found in bacteria and parasitic protozoa and represent pathogenesis factors of the corresponding infections. OPBs consist of two domains connected by a hinge region and have the characteristics of conformational dynamics, which include two types of movements: the bridging/separation of α/β-hydrolase catalytic and β-propeller-regulatory domains and the movement of a loop carrying catalytic histidine, which regulates an assembly/disassembly of the catalytic triad. In this work, an elucidation of the interdomain dynamics of OPB from Serratia proteamaculans (SpOPB) with and without modification of the hinge region was performed using a combination of X-ray diffraction analysis and small-angle X-ray scattering, which was complemented with an essential dynamics sampling (EDS) simulation. The first crystal structure of catalytically deficient SpOPB (SpOPBS532A) with an intact hinge sequence is reported. Similarly to SpOPB with modified hinges, SpOPBS532A was crystallized in the presence of spermine and adopted an intermediate conformation in the crystal lattice. Despite the similarity of the crystal structures, a difference in the catalytic triad residue arrangement was detected, which explained the inhibitory effect of the hinge modification. The SpOPBS532A structure reconstituted to the wild-type form was used as a starting point to the classical MD followed by EDS simulation, which allowed us to simulate the domain separation and the transition of the enzyme from the intermediate to open conformation. The obtained open state model was in good agreement with the experimental SAXS data

    Blue-to-Red TagFT, mTagFT, mTsFT, and Green-to-FarRed mNeptusFT2 Proteins, Genetically Encoded True and Tandem Fluorescent Timers

    No full text
    True genetically encoded monomeric fluorescent timers (tFTs) change their fluorescent color as a result of the complete transition of the blue form into the red form over time. Tandem FTs (tdFTs) change their color as a consequence of the fast and slow independent maturation of two forms with different colors. However, tFTs are limited to derivatives of the mCherry and mRuby red fluorescent proteins and have low brightness and photostability. The number of tdFTs is also limited, and there are no blue-to-red or green-to-far-red tdFTs. tFTs and tdFTs have not previously been directly compared. Here, we engineered novel blue-to-red tFTs, called TagFT and mTagFT, which were derived from the TagRFP protein. The main spectral and timing characteristics of the TagFT and mTagFT timers were determined in vitro. The brightnesses and photoconversions of the TagFT and mTagFT tFTs were characterized in live mammalian cells. The engineered split version of the TagFT timer matured in mammalian cells at 37 °C and allowed the detection of interactions between two proteins. The TagFT timer under the control of the minimal arc promoter, successfully visualized immediate-early gene induction in neuronal cultures. We also developed and optimized green-to-far-red and blue-to-red tdFTs, named mNeptusFT and mTsFT, which were based on mNeptune-sfGFP and mTagBFP2-mScarlet fusion proteins, respectively. We developed the FucciFT2 system based on the TagFT-hCdt1-100/mNeptusFT2-hGeminin combination, which could visualize the transitions between the G1 and S/G2/M phases of the cell cycle with better resolution than the conventional Fucci system because of the fluorescent color changes of the timers over time in different phases of the cell cycle. Finally, we determined the X-ray crystal structure of the mTagFT timer and analyzed it using directed mutagenesis

    Structure of an Acinetobacter Broad-Range Prophage Endolysin Reveals a C-Terminal α-Helix with the Proposed Role in Activity against Live Bacterial Cells

    No full text
    Proteins that include enzymatic domain degrading the bacterial cell wall and a domain providing transport through the bacterial outer membrane are considered as prospective compounds to combat pathogenic Gram-negative bacteria. This paper presents an isolation and study of an enzyme of this class naturally encoded in the prophage region of Acinetobacter baumannii AB 5075 genome. Recombinant protein expressed in E. coli exhibits an antimicrobial activity with respect to live cultures of Gram-negative bacteria reducing the population of viable bacteria by 1.5–2 log colony forming units (CFU)/mL. However the protein becomes rapidly inactivated and enables the bacteria to restore the population. AcLys structure determined by X-ray crystallography reveals a predominantly α—helical fold similar to bacteriophage P22 lysozyme. The С-terminal part of AcLys polypeptide chains forms an α—helix enriched by Lys and Arg residues exposed outside of the protein globule. Presumably this type of structure of the C-terminal α—helix has evolved evolutionally enabling the endolysin to pass the inner membrane during the host lysis or, potentially, to penetrate the outer membrane of the Gram-negative bacteria

    Elucidation of the Conformational Transition of Oligopeptidase B by an Integrative Approach Based on the Combination of X-ray, SAXS, and Essential Dynamics Sampling Simulation

    No full text
    Oligopeptidase B (OPB) is the least studied group from the prolyl oligopeptidase family. OPBs are found in bacteria and parasitic protozoa and represent pathogenesis factors of the corresponding infections. OPBs consist of two domains connected by a hinge region and have the characteristics of conformational dynamics, which include two types of movements: the bridging/separation of α/β-hydrolase catalytic and β-propeller-regulatory domains and the movement of a loop carrying catalytic histidine, which regulates an assembly/disassembly of the catalytic triad. In this work, an elucidation of the interdomain dynamics of OPB from Serratia proteamaculans (SpOPB) with and without modification of the hinge region was performed using a combination of X-ray diffraction analysis and small-angle X-ray scattering, which was complemented with an essential dynamics sampling (EDS) simulation. The first crystal structure of catalytically deficient SpOPB (SpOPBS532A) with an intact hinge sequence is reported. Similarly to SpOPB with modified hinges, SpOPBS532A was crystallized in the presence of spermine and adopted an intermediate conformation in the crystal lattice. Despite the similarity of the crystal structures, a difference in the catalytic triad residue arrangement was detected, which explained the inhibitory effect of the hinge modification. The SpOPBS532A structure reconstituted to the wild-type form was used as a starting point to the classical MD followed by EDS simulation, which allowed us to simulate the domain separation and the transition of the enzyme from the intermediate to open conformation. The obtained open state model was in good agreement with the experimental SAXS data

    Blue-to-Red TagFT, mTagFT, mTsFT, and Green-to-FarRed mNeptusFT2 Proteins, Genetically Encoded True and Tandem Fluorescent Timers

    No full text
    True genetically encoded monomeric fluorescent timers (tFTs) change their fluorescent color as a result of the complete transition of the blue form into the red form over time. Tandem FTs (tdFTs) change their color as a consequence of the fast and slow independent maturation of two forms with different colors. However, tFTs are limited to derivatives of the mCherry and mRuby red fluorescent proteins and have low brightness and photostability. The number of tdFTs is also limited, and there are no blue-to-red or green-to-far-red tdFTs. tFTs and tdFTs have not previously been directly compared. Here, we engineered novel blue-to-red tFTs, called TagFT and mTagFT, which were derived from the TagRFP protein. The main spectral and timing characteristics of the TagFT and mTagFT timers were determined in vitro. The brightnesses and photoconversions of the TagFT and mTagFT tFTs were characterized in live mammalian cells. The engineered split version of the TagFT timer matured in mammalian cells at 37 °C and allowed the detection of interactions between two proteins. The TagFT timer under the control of the minimal arc promoter, successfully visualized immediate-early gene induction in neuronal cultures. We also developed and optimized green-to-far-red and blue-to-red tdFTs, named mNeptusFT and mTsFT, which were based on mNeptune-sfGFP and mTagBFP2-mScarlet fusion proteins, respectively. We developed the FucciFT2 system based on the TagFT-hCdt1-100/mNeptusFT2-hGeminin combination, which could visualize the transitions between the G1 and S/G2/M phases of the cell cycle with better resolution than the conventional Fucci system because of the fluorescent color changes of the timers over time in different phases of the cell cycle. Finally, we determined the X-ray crystal structure of the mTagFT timer and analyzed it using directed mutagenesis

    YTnC2, an improved genetically encoded green calcium indicator based on toadfish troponin C

    No full text
    Genetically encoded calcium indicators based on truncated troponin C are attractive probes for calcium imaging due to their relatively small molecular size and twofold reduced calcium ion buffering. However, the best‐suited members of this family, YTnC and cNTnC, suffer from low molecular brightness, limited dynamic range, and/or poor sensitivity to calcium transients in neurons. To overcome these limitations, we developed an enhanced version of YTnC, named YTnC2. Compared with YTnC, YTnC2 had 5.7‐fold higher molecular brightness and 6.4‐fold increased dynamic range in vitro. YTnC2 was successfully used to reveal calcium transients in the cytosol and in the lumen of mitochondria of both mammalian cells and cultured neurons. Finally, we obtained and analyzed the crystal structure of the fluorescent domain of the YTnC2 mutant

    Crystal structure of PMGL2 esterase from the hormone-sensitive lipase family with GCSAG motif around the catalytic serine.

    No full text
    Lipases comprise a large class of hydrolytic enzymes which catalyze the cleavage of the ester bonds in triacylglycerols and find numerous biotechnological applications. Previously, we have cloned the gene coding for a novel esterase PMGL2 from a Siberian permafrost metagenomic DNA library. We have determined the 3D structure of PMGL2 which belongs to the hormone-sensitive lipase (HSL) family and contains a new variant of the active site motif, GCSAG. Similar to many other HSLs, PMGL2 forms dimers in solution and in the crystal. Our results demonstrated that PMGL2 and structurally characterized members of the GTSAG motif subfamily possess a common dimerization interface that significantly differs from that of members of the GDSAG subfamily of known structure. Moreover, PMGL2 had a unique organization of the active site cavity with significantly different topology compared to the other lipolytic enzymes from the HSL family with known structure including the distinct orientation of the active site entrances within the dimer and about four times larger size of the active site cavity. To study the role of the cysteine residue in GCSAG motif of PMGL2, the catalytic properties and structure of its double C173T/C202S mutant were examined and found to be very similar to the wild type protein. The presence of the bound PEG molecule in the active site of the mutant form allowed for precise mapping of the amino acid residues forming the substrate cavity
    corecore