41 research outputs found

    Faecal corticosterone metabolite assessment in socially housed male and female wistar rats

    Get PDF
    Knowledge of animals’ hormonal status is important for conservation studies in wild or semi-free-ranging conditions as well as for behavioural and clinical experiments conducted in laboratory research, mostly performed on rats and mice. Faecal sampling is a useful non-invasive method to obtain steroid hormone assessments. Nevertheless, in laboratory studies, unlike other contexts, faecal sampling is less utilised. One of the issues raised is the necessity to collect samples belonging to different animals, separately. Usually, researchers using faecal sampling solve this problem through the isolation of animals or taking the cage rather than single animal as unit of study. These solutions though, could lead to unreliable measurements, and cannot be applied in many studies. Our aim was to show the biological reliability of individual faecal corticosterone metabolite (FCM) assessments in socially housed male and female Wistar rats. We analytically validated the enzyme immunoassay kit used for FCM assessments. Then, we exposed the animals to two different stress stimuli that are known to activate the hypothalamus–pituitary–adrenal axis and the following release of corticosterone to biologically validate the EIA kit: environmental enrichment and predator odour. Individual faecal sampling from social animals was collected through short-time handling. The results demonstrated that both the stimuli increased FCM levels in male and female rats showing the reliability of EIA kit assessment and the applicability of our sampling method. We also found a diurnal rhythm in FCM levels. These results could help to increase the use of faecal hormone metabolite determinations in studies conducted on rats

    Maternal corticosterone effects on hypothalamus-pituitary-adrenal axis regulation and behavior of the offspring in rodents

    No full text
    The behavioral and physiological traits of an individual are strongly influenced by early life events. One of the major systems implicated in the responses to environmental manipulations and stress is the hypothalamus-pituitary-adrenal (HPA) axis. Glucocorticoid hormones (cortisol in humans and corticosterone in rodents) represent the final step in the activation of the HPA system and play an important role in the effects induced by the perinatal environment. We demonstrated, in rats with some differences between males and females, that mothers whose drinking water was supplemented with moderate doses of corticosterone throughout the lactation period, give birth to offspring better able to meet the demands of the environment. The progeny of these mothers, as adults, show improved learning capabilities, reduced fearfulness in anxiogenic situations, lower metabotropic glutamate receptors and higher glucocorticoid receptors in the hippocampus with a persistent hyporeactivity of the HPA axis leading to a resistance to ischemic neuronal damage. Other studies performed in mice showed that low doses of corticosterone in the maternal drinking water, which, as in our rat model, may reflect a form of mild environmental stimulation, enhanced the offspring's ability to cope with different situations, while elevated doses, comparable to those elicited by strong stressors, caused developmental disruption. Significantly, adult rats and mice that had been nursed by mothers with a mild hypercorticosteronemia provide an example of how a moderate corticosterone increase mediates the salutary effects of some events occurring early in life. Both maternal and infantile plasma levels of the hormone may play a role in these effects, the first influencing maternal behavior, the second acting directly on the central nervous system of the developing rat. (C) 2010 Elsevier Ltd. All rights reserved

    PITUITARY-ADRENOCORTICAL AND PINEAL ACTIVITIES IN THE AGED RAT - EFFECTS OF LONG-TERM TREATMENT WITH ACETYL-L-CARNITINE

    No full text

    Effect of increased maternal corticosterone during lactation on hippocampal corticosteroid receptors, stress response and learning in offspring in the early stages of life

    No full text
    The influence of maternal corticosterone during lactation on the development of the hippocampal corticosteroid receptor system, hypothalamus-pituitary-adrenal axis activity and spatial learning/retention performance was investigated in the rat during postnatal days 11 to 30. We increased the plasma levels of corticosterone by adding the hormone (200 ÎĽg/ml) to the drinking water of the dams. When compared to controls corticosterone-nursed offspring displayed: i) higher number of hippocampal type I and type II corticosteroid receptors at 30 days of life, but no changes at 11 and 16 days; ii) higher plasma levels of corticosterone in the basal condition and after 15 min of maternal separation at 11 but not at 16 days; iii) lower adrenal weights at 11 and 16 days, but which were no longer present at the age of 30 days; iv) no difference in performance in the place learning version of the Morris water task and T aquatic maze at 16 days. The present results, together with our previous findings showing that 90-day-old corticosterone-nursed rats have lower basal and restraint stress corticosterone levels and improved learning performance, indicate that the effects of maternal treatment appears only after weaning, thereby suggesting that increased corticosteroid receptors may be responsible, at least partially, for the endocrine and learning modifications induced by pre-weaning corticosterone exposure. The role played by maternal circulating corticosterone during the period of lactation in shaping the characteristics of the hypothalamus-pituitary-adrenal axis and brain of the offspring is outlined

    Neurotoxicity of Kainate to the hippocampus is not accrued by aging, stress and exogenous corticosterone in wistar kyoto and spontaneously hypertensive rats.

    No full text
    It has been reported that a high corticosterone milieu can exacerbate various experimental insults to the nervous system, in particular to the hippocampus. However, in many of these studies the above milieu was attained by injecting corticosterone in doses (e.g. 10 mg/rat) producing supraphysiological concentrations. In the present study we have investigated whether high plasma corticosterone levels, such as those associated with aging or stress, potentiate a hippocampal excitotoxic insult. Male Wistar Kyoto (WKY) and Spontaneously Hypertensive Rats (SHR) at the age of 6, 12, 18 and 24 months (only WKY for the oldest age) were used. As in other strains, aging in these rats was marked by an increase in basal plasma corticosterone levels. Rats were infused in the dorsal hippocampus with kainic acid (0.035 µg/hippocampus) and the neuronal injury was evaluated within the areas CA3 and CA4. Results indicated that neither aging nor the hypertensive condition affected kainic acid neurotoxicity. In order to study the effect of stress, rats were stressed twice a day, with alternate types of stressors to avoid possible habituation, 3 days prior to and 3 days following the kainic acid infusion. Using this experimental paradigm the hippocampal damage in stressed rats was of the same degree as in non-stressed controls. In a complementary set of experiments, 6 month old WKY and SHR rats were injected with corticosterone (10 mg/rat s.c.). Four hours after administration plasma corticosterone levels in the range of 60-70 µg/100 ml were found. Moreover, a time-course study showed a plasma corticosterone peak in the range of 240 µg/100 ml. Daily corticosterone administration for 3 days before and 3 days after kainic acid infusion potentiated the hippocampal damage in 6 months old SHR but not in the WKY. These results demonstrate that elevation of corticosterone levels within physiological range does not exacerbate hippocampal kainate neurotoxicity and that pharmacological doses of glucocorticoid hormone, which produces plasma levels well above those observable in any physiopathological condition, might, with some strain dependency, potentiate a hippocampal neurotoxic insult
    corecore