6 research outputs found

    Unravelling the Efficient Applications of Zinc and Selenium for Mitigation of Abiotic Stresses in Plants

    No full text
    Abiotic stress factors are considered a serious threat to various growth parameters of crop plants. Stressors such as drought, salinity, and heavy metals (HMs) hamper the chlorophyll content in plants, resulting in low photosynthesis, hinder the integrity of cell membranes, reduce biomass, and overall growth and development of crops which ultimately results in the sharp decline of crop yield. Under such stressful conditions, various strategies are employed to overcome hazardous effects. Application of Zinc (Zn) or Selenium (Se) in different forms is an effective way to alleviate the abiotic stresses in plants. Zn and Se play a pivotal role in enhancing the chlorophyll level to improve photosynthesis, reducing oxidative stress by limiting reactive oxygen species (ROS) production, controlling HMs absorption by plant roots and their accumulation in the plant body, maintaining homeostasis, and alleviating all the detrimental effects caused by abiotic stress factors. The current review is focused on the usefulness of Zn and Se application, their uptake, sensitization, and different defence mechanisms to relieve adverse effects of abiotic stresses (such as drought, salinity, and HMs) on crops. In this connection, research gaps have also been highlighted

    Unravelling the Efficient Applications of Zinc and Selenium for Mitigation of Abiotic Stresses in Plants

    No full text
    Abiotic stress factors are considered a serious threat to various growth parameters of crop plants. Stressors such as drought, salinity, and heavy metals (HMs) hamper the chlorophyll content in plants, resulting in low photosynthesis, hinder the integrity of cell membranes, reduce biomass, and overall growth and development of crops which ultimately results in the sharp decline of crop yield. Under such stressful conditions, various strategies are employed to overcome hazardous effects. Application of Zinc (Zn) or Selenium (Se) in different forms is an effective way to alleviate the abiotic stresses in plants. Zn and Se play a pivotal role in enhancing the chlorophyll level to improve photosynthesis, reducing oxidative stress by limiting reactive oxygen species (ROS) production, controlling HMs absorption by plant roots and their accumulation in the plant body, maintaining homeostasis, and alleviating all the detrimental effects caused by abiotic stress factors. The current review is focused on the usefulness of Zn and Se application, their uptake, sensitization, and different defence mechanisms to relieve adverse effects of abiotic stresses (such as drought, salinity, and HMs) on crops. In this connection, research gaps have also been highlighted

    Alkylresorcinols as New Modulators of the Metabolic Activity of the Gut Microbiota

    No full text
    Alkylresorcinols (ARs) are polyphenolic compounds with a wide spectrum of biological activities and are potentially involved in the regulation of host metabolism. The present study aims to establish whether ARs can be produced by the human gut microbiota and to evaluate alterations in content in stool samples as well as metabolic activity of the gut microbiota of C57BL, db/db, and LDLR (−/−) mice according to diet specifications and olivetol (5-n-pentylresorcinol) supplementation to estimate the regulatory potential of ARs. Gas chromatography with mass spectrometric detection was used to quantitatively analyse AR levels in mouse stool samples; faecal microbiota transplantation (FMT) from human donors to germ-free mice was performed to determine whether the intestinal microbiota could produce AR molecules; metagenome sequencing analysis of the mouse gut microbiota followed by reconstruction of its metabolic activity was performed to investigate olivetol’s regulatory potential. A significant increase in the amounts of individual members of AR homologues in stool samples was revealed 14 days after FMT. Supplementation of 5-n-Pentylresorcinol to a regular diet influences the amounts of several ARs in the stool of C57BL/6 and LDLR (−/−) but not db/db mice, and caused a significant change in the predicted metabolic activity of the intestinal microbiota of C57BL/6 and LDLR (−/−) but not db/db mice. For the first time, we have shown that several ARs can be produced by the intestinal microbiota. Taking into account the dependence of AR levels in the gut on olivetol supplementation and microbiota metabolic activity, AR can be assumed to be potential quorum-sensing molecules, which also influence gut microbiota composition and host metabolism

    Alkylresorcinols as a New Type of Gut Microbiota Regulators Influencing Immune Therapy Efficiency in Lung Cancer Treatment

    No full text
    Background. Alkylresorcinols (ARs) are polyphenolic compounds of microbial origin with a wide spectrum of biological activities and are potentially involved in host immune functioning. The present study is aimed at evaluating alterations in AR content in blood serum and faeces from healthy donors and patients with lung cancer in connection with response to immune checkpoint inhibitor (ICI) therapy to estimate the regulatory potential of AR. Methods. Quantitative analysis of AR levels, as well as other microbial metabolites in blood serum and faeces, was performed using gas chromatography with mass spectrometric detection; estimation of lymphocyte subsets was performed by flow cytometry; faecal microbiota transplantation (FMT) from lung cancer patients after ICI therapy to germ-free mice was performed to explore whether the intestinal microbiota could produce AR molecules. Results. AR concentrations in both faeces and serum differ dramatically between healthy and lung cancer donors. The significant increase in AR concentrations in mouse faeces after FMT points to the microbial origin of ARs. For several ARs, there were strong positive and negative correlations in both faeces and serum with immune cells and these interrelationships differed between the therapy-responsive and nonresponsive groups. Conclusions. The content of ARs may influence the response to ICI therapy in lung cancer patients. ARs may be considered regulatory molecules that determine the functioning of antitumor immunity
    corecore