4,402 research outputs found

    Equilibrium configurations of two charged masses in General Relativity

    Full text link
    An asymptotically flat static solution of Einstein-Maxwell equations which describes the field of two non-extreme Reissner - Nordstr\"om sources in equilibrium is presented. It is expressed in terms of physical parameters of the sources (their masses, charges and separating distance). Very simple analytical forms were found for the solution as well as for the equilibrium condition which guarantees the absence of any struts on the symmetry axis. This condition shows that the equilibrium is not possible for two black holes or for two naked singularities. However, in the case when one of the sources is a black hole and another one is a naked singularity, the equilibrium is possible at some distance separating the sources. It is interesting that for appropriately chosen parameters even a Schwarzschild black hole together with a naked singularity can be "suspended" freely in the superposition of their fields.Comment: 4 pages; accepted for publication in Phys. Rev.

    The 1/N-expansion, quantum-classical correspondence and nonclassical states generation in dissipative higher-order anharmonic oscillators

    Full text link
    We develop a method for the determination of thecdynamics of dissipative quantum systems in the limit of large number of quanta N, based on the 1/N-expansion of Heidmann et al. [ Opt. Commun. 54, 189 (1985) ] and the quantum-classical correspondence. Using this method, we find analytically the dynamics of nonclassical states generation in the higher-order anharmonic dissipative oscillators for an arbitrary temperature of a reservoir. We show that the quantum correction to the classical motion increases with time quadratically up to some maximal value, which is dependent on the degree of nonlinearity and a damping constant, and then it decreases. Similarities and differences with the corresponding behavior of the quantum corrections to the classical motion in the Hamiltonian chaotic systems are discussed. We also compare our results obtained for some limiting cases with the results obtained by using other semiclassical tools and discuss the conditions for validity of our approach.Comment: 15 pages, RevTEX (EPSF-style), 3 figs. Replaced with final version (stylistic corrections

    Hamiltonian Quantization of Chern-Simons theory with SL(2,C) Group

    Get PDF
    We analyze the hamiltonian quantization of Chern-Simons theory associated to the universal covering of the Lorentz group SO(3,1). The algebra of observables is generated by finite dimensional spin networks drawn on a punctured topological surface. Our main result is a construction of a unitary representation of this algebra. For this purpose, we use the formalism of combinatorial quantization of Chern-Simons theory, i.e we quantize the algebra of polynomial functions on the space of flat SL(2,C)-connections on a topological surface with punctures. This algebra admits a unitary representation acting on an Hilbert space which consists in wave packets of spin-networks associated to principal unitary representations of the quantum Lorentz group. This representation is constructed using only Clebsch-Gordan decomposition of a tensor product of a finite dimensional representation with a principal unitary representation. The proof of unitarity of this representation is non trivial and is a consequence of properties of intertwiners which are studied in depth. We analyze the relationship between the insertion of a puncture colored with a principal representation and the presence of a world-line of a massive spinning particle in de Sitter space.Comment: 78 pages. Packages include

    THz parametric gain in semiconductor superlattices in the absence of electric domains

    Full text link
    We theoretically show that conditions for THz gain and conditions for formation of destructive electric domains in semiconductor superlattices are fairly different in the case of parametric generation and amplification. Action of an unbiased high-frequency electric field on a superlattice causes a periodic variation of energy and effective mass of miniband electrons. This parametric effect can result in a significant gain at some even harmonic of the pump frequency without formation of electric domains and corruption from pump harmonics.Comment: 4 pages, 3 figures. Accepted to Appl. Phys. Let

    Braided Cyclic Cocycles and Non-Associative Geometry

    Full text link
    We use monoidal category methods to study the noncommutative geometry of nonassociative algebras obtained by a Drinfeld-type cochain twist. These are the so-called quasialgebras and include the octonions as braided-commutative but nonassociative coordinate rings, as well as quasialgebra versions \CC_{q}(G) of the standard q-deformation quantum groups. We introduce the notion of ribbon algebras in the category, which are algebras equipped with a suitable generalised automorphism σ\sigma, and obtain the required generalisation of cyclic cohomology. We show that this \emph{braided cyclic cocohomology} is invariant under a cochain twist. We also extend to our generalisation the relation between cyclic cohomology and differential calculus on the ribbon quasialgebra. The paper includes differential calculus and cyclic cocycles on the octonions as a finite nonassociative geometry, as well as the algebraic noncommutative torus as an associative example.Comment: 36 pages latex, 9 figure
    corecore