40 research outputs found

    ClaR—a novel key regulator of cellobiose and lactose metabolism in Lactococcus lactis IL1403

    Get PDF
    In a number of previous studies, our group has discovered an alternative pathway for lactose utilization in Lactococcus lactis that, in addition to a sugar-hydrolyzing enzyme with both P-β-glucosidase and P-β-galactosidase activity (BglS), engages chromosomally encoded components of cellobiose-specific PTS (PTSCel-Lac), including PtcA, PtcB, and CelB. In this report, we show that this system undergoes regulation via ClaR, a novel activator protein from the RpiR family of transcriptional regulators. Although RpiR proteins are widely distributed among lactic acid bacteria, their roles have yet to be confirmed by functional assays. Here, we show that ClaR activity depends on intracellular cellobiose-6-phosphate availability, while other sugars such as glucose or galactose have no influence on it. We also show that ClaR is crucial for activation of the bglS and celB expression in the presence of cellobiose, with some limited effects on ptcA and ptcB activation. Among 190 of carbon sources tested, the deletion of claR reduces L. lactis growth only in lactose- and/or cellobiose-containing media, suggesting a narrow specificity of this regulator within the context of sugar metabolism

    Reduced graphene oxide and inorganic nanoparticles composites – synthesis and characterization

    No full text
    Graphene – novel 2D material, which possesses variety of fascinating properties, can be considered as a convenient support material for the nanoparticles. In this work various methods of synthesis of reduced graphene oxide with metal or metal oxide nanoparticles will be presented. The hydrothermal approach for deposition of platinum, palladium and zirconium dioxide nanoparticles in ethylene glycol/water solution was applied. Here, platinum/reduced graphene oxide (Pt/RGO), palladium/reduced graphene oxide (Pd/RGO) and zirconium dioxide/reduced graphene oxide (ZrO2/RGO) nanocomposites were prepared. Additionally, manganese dioxide/reduced graphene oxide nanocomposite (MnO2/RGO) was synthesized in an oleic-water interface. The obtained nanocomposites were investigated by transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), Raman spectroscopy and thermogravimetric analysis (TGA). The results shows that GO can be successfully used as a template for direct synthesis of metal or metal oxide nanoparticles on its surface with a homogenous distribution

    Equilibrium and kinetics studies for the adsorption of Ni2+ and Fe3+ ions from aqueous solution by graphene oxide

    No full text
    In this study, the adsorption of Ni2+  and Fe3+  metal ions from aqueous solutions onto graphene oxide (GO) have been explored. The effects of various experimental factors such as pH of the solution, initial metal ion concentration and temperature were evaluated. The kinetic, equilibrium and thermodynamic studies were also investigated. The adsorption rate data were analyzed using the pseudo-first-order kinetic model, the pseudo-second-order kinetic model and the intraparticle diffusion model. Kinetic studies indicate that the adsorption of both ions follows the pseudo-second-order kinetics. The isotherms of adsorption data were analyzed by adsorption isotherm models such as Langmuir and Freundlich. Equilibrium data fitted well with the Langmuir model. The maximum adsorption capacities of Ni2+  and Fe3+  onto GO were 35.6 and 27.3 mg g-1 , respectively. In addition, various thermodynamic parameters, such as enthalpy (ΔHO), entropy (ΔSO) and Gibbs free energy (ΔGO), were calculated

    Regulation of carbon catabolism in Lactococcus lactis.

    No full text
    The Lactococcus lactis IL1403 is a lactose negative, plasmid free strain. Nevertheless, it is able to hydrolyze lactose in the presence of cellobiose.In this work we describe identification of a gene involved in this process. The gene was found to be homologous to the sugar catabolism regulator, ccpA. The complete DNA sequence and analysis of the region encoding the ccpA gene is also presented.</p
    corecore