13,984 research outputs found

    Spin noise in quantum dot ensembles

    Full text link
    We study theoretically spin fluctuations of resident electrons or holes in singly charged quantum dots. The effects of external magnetic field and effective fields caused by the interaction of electron and nuclei spins are analyzed. The fluctuations of spin Faraday, Kerr and ellipticity signals revealing the spin noise of resident charge carriers are calculated for the continuous wave probing at the singlet trion resonance.Comment: 8 pages, 4 figure

    Simulations of magnetic and magnetoelastic properties of Tb2Ti2O7 in paramagnetic phase

    Full text link
    Magnetic and magnetoelastic properties of terbium titanate pyrochlore in paramagnetic phase are simulated. The magnetic field and temperature dependences of magnetization and forced magnetostriction in Tb2Ti2O7 single crystals and polycrystalline samples are calculated in the framework of exchange charge model of crystal field theory and a mean field approximation. The set of electron-deformation coupling constants has been determined. Variations of elastic constants with temperature and applied magnetic field are discussed. Additional strong softening of the crystal lattice at liquid helium temperatures in the magnetic field directed along the rhombic symmetry axis is predicted.Comment: 13 pages, 4 figures, 2 table

    Performance of the modified Becke-Johnson potential

    Full text link
    Very recently, in the 2011 version of the Wien2K code, the long standing shortcome of the codes based on Density Functional Theory, namely, its impossibility to account for the experimental band gap value of semiconductors, was overcome. The novelty is the introduction of a new exchange and correlation potential, the modified Becke-Johnson potential (mBJLDA). In this paper, we report our detailed analysis of this recent work. We calculated using this code, the band structure of forty one semiconductors and found an important improvement in the overall agreement with experiment as Tran and Blaha [{\em Phys. Rev. Lett.} 102, 226401 (2009)] did before for a more reduced set of semiconductors. We find, nevertheless, within this enhanced set, that the deviation from the experimental gap value can reach even much more than 20%, in some cases. Furthermore, since there is no exchange and correlation energy term from which the mBJLDA potential can be deduced, a direct optimization procedure to get the lattice parameter in a consistent way is not possible as in the usual theory. These authors suggest that a LDA or a GGA optimization procedure is used previous to a band structure calculation and the resulting lattice parameter introduced into the 2011 code. This choice is important since small percentage differences in the lattice parameter can give rise to quite higher percentage deviations from experiment in the predicted band gap value.Comment: 10 pages, 2 figures, 5 Table

    The gravity-related decoherence master equation from hybrid dynamics

    Full text link
    Canonical coupling between classical and quantum systems cannot result in reversible equations, rather it leads to irreversible master equations. Coupling of quantized non-relativistic matter to gravity is illustrated by a simplistic example. The heuristic derivation yields the theory of gravity-related decoherence proposed longtime ago by Penrose and the author.Comment: 9pp, extended version of invited talk at Fifth International Workshop DICE2010 (Castello Pasquini/Castiglioncello/Tuscany, Sept. 13-17, 2010

    Quantum, Multi-Body Effects and Nuclear Reaction Rates in Plasmas

    Full text link
    Detailed calculations of the contribution from off-shell effects to the quasiclassical tunneling of fusing particles are provided. It is shown that these effects change the Gamow rates of certain nuclear reactions in dense plasma by several orders of magnitude.Comment: 11 pages; change of content: added clarification of one of the important steps in the derivatio

    Detailed studies of non-linear magneto-optical resonances at D1 excitation of Rb-85 and Rb-87 for partially resolved hyperfine F-levels

    Full text link
    Experimental signals of non-linear magneto-optical resonances at D1 excitation of natural rubidium in a vapor cell have been obtained and described with experimental accuracy by a detailed theoretical model based on the optical Bloch equations. The D1 transition of rubidium is a challenging system to analyze theoretically because it contains transitions that are only partially resolved under Doppler broadening. The theoretical model took into account all nearby transitions, the coherence properties of the exciting laser radiation, and the mixing of magnetic sublevels in an external magnetic field and also included averaging over the Doppler profile. Great care was taken to obtain accurate experimental signals and avoid systematic errors. The experimental signals were reproduced very well at each hyperfine transition and over a wide range of laser power densities, beam diameters, and laser detunings from the exact transition frequency. The bright resonance expected at the F_g=1 --> F_e=2 transition of Rb-87 has been observed. A bright resonance was observed at the F_g=2 --> F_e=3 transition of Rb-85, but displaced from the exact position of the transition due to the influence of the nearby F_g=2 --> F_e=2 transition, which is a dark resonance whose contrast is almost two orders of magnitude larger than the contrast of the bright resonance at the F_g=2 --> F_e=3 transition. Even in this very delicate situation, the theoretical model described in detail the experimental signals at different laser detunings.Comment: 11 pages, 9 figure

    Probing photo-ionization: simulations of positive streamers in varying N2:O2 mixtures

    Get PDF
    Photo-ionization is the accepted mechanism for the propagation of positive streamers in air though the parameters are not very well known; the efficiency of this mechanism largely depends on the presence of both nitrogen and oxygen. But experiments show that streamer propagation is amazingly robust against changes of the gas composition; even for pure nitrogen with impurity levels below 1 ppm streamers propagate essentially with the same velocity as in air, but their minimal diameter is smaller, and they branch more frequently. Additionally, they move more in a zigzag fashion and sometimes exhibit a feathery structure. In our simulations, we test the relative importance of photo-ionization and of the background ionization from pulsed repetitive discharges, in air as well as in nitrogen with 1 ppm O2 . We also test reasonable parameter changes of the photo-ionization model. We find that photo- ionization dominates streamer propagation in air for repetition frequencies of at least 1 kHz, while in nitrogen with 1 ppm O2 the effect of the repetition frequency has to be included above 1 Hz. Finally, we explain the feather-like structures around streamer channels that are observed in experiments in nitrogen with high purity, but not in air.Comment: 12 figure

    Non-equilibrium statistical mechanics of classical nuclei interacting with the quantum electron gas

    Full text link
    Kinetic equations governing time evolution of positions and momenta of atoms in extended systems are derived using quantum-classical ensembles within the Non-Equilibrium Statistical Operator Method (NESOM). Ions are treated classically, while their electrons quantum mechanically; however, the statistical operator is not factorised in any way and no simplifying assumptions are made concerning the electronic subsystem. Using this method, we derive kinetic equations of motion for the classical degrees of freedom (atoms) which account fully for the interaction and energy exchange with the quantum variables (electrons). Our equations, alongside the usual Newtonian-like terms normally associated with the Ehrenfest dynamics, contain additional terms, proportional to the atoms velocities, which can be associated with the electronic friction. Possible ways of calculating the friction forces which are shown to be given via complicated non-equilibrium correlation functions, are discussed. In particular, we demonstrate that the correlation functions are directly related to the thermodynamic Matsubara Green's functions, and this relationship allows for the diagrammatic methods to be used in treating electron-electron interaction perturbatively when calculating the correlation functions. This work also generalises previous attempts, mostly based on model systems, of introducing the electronic friction into Molecular Dynamics equations of atoms.Comment: 18 page

    Spin noise spectroscopy under resonant optical probing conditions: coherent and non-linear effects

    Get PDF
    High sensitivity Faraday rotation spectroscopy is used to measure the fluctuating magnetization noise of non-interacting rubidium atoms under resonant and non-resonant optical probing conditions. The spin noise frequency spectra in dependence on the probe light detuning with respect to the D2-transition reveals clear signatures of a coherent coupling of the participating electronic levels. The results are explained by extended Bloch equations including homogeneous and inhomogeneous broadening mechanisms. Our measurements further indicate that spin noise originating from excited states are governed at high intensities by collective effects

    Crowdsourcing EO datasets to improve cloud detection algorithms and land cover change

    Get PDF
    Involving citizens in science is gaining considerable traction of late. With positive examples (e.g. Geo-Wiki, FotoQuest Austria), a number of projects are exploring the options to engage the public in contributing to scientific research, often by asking participants to collect some data or validate some results. The International Institute for Applied Systems Analysis (IIASA), with extensive experience in crowdsourcing and gamification, has joined Sinergise, Copernicus Masters 2016 winners, to engage the public in an initiative involving ESA’s Sentinel-2 satellite imagery. Sentinel-2 imagery offers high revisit times and sufficient resolution for land change detection applications. Unfortunately, simple (but fast) algorithms often fail due to many false-positives: changes in clouds are perceived as land changes. The ability to discriminate of cloudy pixels is thus crucial for any automatic or semi-automatic solutions that detect land change. A plethora of algorithms to distinguish clouds in Sentinel-2 data are available. However, there is a need for better data on where and when clouds occur to help improve these algorithms. To overcome this current gap in the data, we are engaging the public in this task. Using a number of tools, developed at IIASA, and Sentinel Hub services, which provide fast access to the entire global archive of Sentinel-2 data, the aim is to obtain a large data resource of curated cloud classifications. The resulting dataset will be published as open data and made available through Geopedia platform. The gamified process will start by asking users if there are clouds on a small image (e.g. 8x8 pixels at the highest Sentinel-2 resolution of 10 m/px), which will provide us with a screening process to pinpoint cloudy areas, employing Picture Pile crowdsourcing game from IIASA. The next step will involve a more detailed workflow, as users will get a slightly larger image (e.g. 64x64 pixels) and will then be asked to delineate different types of clouds: opaque clouds (nothing is seen through the clouds), thick clouds (where the surface is still discernible through the clouds), and thin clouds (where the surface is unequivocally covered by a cloud); the rest of the image will be implicitly cloud-free. The resulting data will be made available through the Geopedia portal, both for exploring and downloading. This paper will demonstrate this process and show some results from a crowdsourcing campaign. The approach will also allow us to collect other datasets in a rapid and efficient manner. For example, using a slightly modified configuration, a similar workflow could be used to obtain a manually curated land cover classification data set, which could be used as training data for machine learning algorithms
    • …
    corecore