14,884 research outputs found
Optical measurements of spin noise as a high resolution spectroscopic tool
The intrinsic fluctuations of electron spins in semiconductors and atomic
vapors generate a small, randomly-varying "spin noise" that can be detected by
sensitive optical methods such as Faraday rotation. Recent studies have
demonstrated that the frequency, linewidth, and lineshape of this spin noise
directly reveals dynamical spin properties such as dephasing times, relaxation
mechanisms and g-factors without perturbing the spins away from equilibrium.
Here we demonstrate that spin noise measurements using wavelength-tunable probe
light forms the basis of a powerful and novel spectroscopic tool to provide
unique information that is fundamentally inaccessible via conventional linear
optics. In particular, the wavelength dependence of the detected spin noise
power can reveal homogeneous linewidths buried within inhomogeneously-broadened
optical spectra, and can resolve overlapping optical transitions belonging to
different spin systems. These new possibilities are explored both theoretically
and via experiments on spin systems in opposite limits of inhomogeneous
broadening (alkali atom vapors and semiconductor quantum dots).Comment: 4 pages, 4 figure
Performance of the modified Becke-Johnson potential
Very recently, in the 2011 version of the Wien2K code, the long standing
shortcome of the codes based on Density Functional Theory, namely, its
impossibility to account for the experimental band gap value of semiconductors,
was overcome. The novelty is the introduction of a new exchange and correlation
potential, the modified Becke-Johnson potential (mBJLDA). In this paper, we
report our detailed analysis of this recent work. We calculated using this
code, the band structure of forty one semiconductors and found an important
improvement in the overall agreement with experiment as Tran and Blaha [{\em
Phys. Rev. Lett.} 102, 226401 (2009)] did before for a more reduced set of
semiconductors. We find, nevertheless, within this enhanced set, that the
deviation from the experimental gap value can reach even much more than 20%, in
some cases. Furthermore, since there is no exchange and correlation energy term
from which the mBJLDA potential can be deduced, a direct optimization procedure
to get the lattice parameter in a consistent way is not possible as in the
usual theory. These authors suggest that a LDA or a GGA optimization procedure
is used previous to a band structure calculation and the resulting lattice
parameter introduced into the 2011 code. This choice is important since small
percentage differences in the lattice parameter can give rise to quite higher
percentage deviations from experiment in the predicted band gap value.Comment: 10 pages, 2 figures, 5 Table
Non-equilibrium statistical mechanics of classical nuclei interacting with the quantum electron gas
Kinetic equations governing time evolution of positions and momenta of atoms
in extended systems are derived using quantum-classical ensembles within the
Non-Equilibrium Statistical Operator Method (NESOM). Ions are treated
classically, while their electrons quantum mechanically; however, the
statistical operator is not factorised in any way and no simplifying
assumptions are made concerning the electronic subsystem. Using this method, we
derive kinetic equations of motion for the classical degrees of freedom (atoms)
which account fully for the interaction and energy exchange with the quantum
variables (electrons). Our equations, alongside the usual Newtonian-like terms
normally associated with the Ehrenfest dynamics, contain additional terms,
proportional to the atoms velocities, which can be associated with the
electronic friction. Possible ways of calculating the friction forces which are
shown to be given via complicated non-equilibrium correlation functions, are
discussed. In particular, we demonstrate that the correlation functions are
directly related to the thermodynamic Matsubara Green's functions, and this
relationship allows for the diagrammatic methods to be used in treating
electron-electron interaction perturbatively when calculating the correlation
functions. This work also generalises previous attempts, mostly based on model
systems, of introducing the electronic friction into Molecular Dynamics
equations of atoms.Comment: 18 page
Profiles of inflated surfaces
We study the shape of inflated surfaces introduced in \cite{B1} and
\cite{P1}. More precisely, we analyze profiles of surfaces obtained by
inflating a convex polyhedron, or more generally an almost everywhere flat
surface, with a symmetry plane. We show that such profiles are in a
one-parameter family of curves which we describe explicitly as the solutions of
a certain differential equation.Comment: 13 pages, 2 figure
Observation of ground-state quantum beats in atomic spontaneous emission
We report ground-state quantum beats in spontaneous emission from a
continuously driven atomic ensemble. Beats are visible only in an intensity
autocorrelation and evidence spontaneously generated coherence in radiative
decay. Our measurement realizes a quantum eraser where a first photon detection
prepares a superposition and a second erases the "which-path" information in
the intermediate state.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Letter
- …