5 research outputs found

    Application of the XBoost Regressor for an A Priori Prediction of UAV Image Quality

    No full text
    In general, the quality of imagery from Unmanned Aerial Vehicles (UAVs) is evaluated after the flight, and then a decision is made on the further value and use of the acquired data. In this paper, an a priori (preflight) image quality prediction methodology is proposed to estimate the preflight image quality and to avoid unfavourable flights, which is extremely important from a time and cost management point of view. The XBoost Regressor model and cross-validation were used for machine learning of the model and image quality prediction. The model was learned on a rich database of real-world images acquired from UAVs under conditions varying in both sensor type, UAV type, exposure parameters, weather, topography, and land cover. Radiometric quality indices (SNR, Entropy, PIQE, NIQE, BRISQUE, and NRPBM) were calculated for each image to train and test the model and to assess the accuracy of image quality prediction. Different variants of preflight parameter knowledge were considered in the study. The proposed methodology offers the possibility of predicting image quality with high accuracy. The correlation coefficient between the actual and predicted image quality, depending on the number of parameters known a priori, ranged from 0.90 to 0.96. The methodology was designed for data acquired from a UAV. Similar prediction accuracy is expected for other low-altitude or close-range photogrammetric data

    Integration of Satellite Data with High Resolution Ratio: Improvement of Spectral Quality with Preserving Spatial Details

    No full text
    Commonly used image fusion techniques generally produce good results for images obtained from the same sensor, with a standard ratio of spatial resolution (1:4). However, an atypical high ratio of resolution reduces the effectiveness of fusion methods resulting in a decrease in the spectral or spatial quality of the sharpened image. An important issue is the development of a method that allows for maintaining simultaneous high spatial and spectral quality. The authors propose to strengthen the pan-sharpening methods through prior modification of the panchromatic image. Local statistics of the differences between the original panchromatic image and the intensity of the multispectral image are used to detect spatial details. The Euler’s number and the distance of each pixel from the nearest pixel classified as a spatial detail determine the weight of the information collected from each integrated image. The research was carried out for several pan-sharpening methods and for data sets with different levels of spectral matching. The proposed solution allows for a greater improvement in the quality of spectral fusion, while being able to identify the same spatial details for most pan-sharpening methods and is mainly dedicated to Intensity-Hue-Saturation based methods for which the following improvements in spectral quality were achieved: about 30% for the urbanized area and about 15% for the non-urbanized area

    Pre-Processing of Panchromatic Images to Improve Object Detection in Pansharpened Images

    No full text
    In recent years, many techniques of fusion of multi-sensors satellite images have been developed. This article focuses on examining and improvement the usability of pansharpened images for object detection, especially when fusing data with a high GSD ratio. A methodology to improve an interpretative ability of pansharpening results is based on pre-processing of the panchromatic image using Logarithmic-Laplace filtration. The proposed approach was used to examine several different pansharpening methods and data sets with different spatial resolution ratios, i.e., from 1:4 to 1:60. The obtained results showed that the proposed approach significantly improves an object detection of fused images, especially for imagery data with a high-resolution ratio. The interpretative ability was assessed using qualitative method (based on image segmentation) and quantitative method (using an indicator based on the Speeded Up Robust Features (SURF) detector). In the case of combining data acquired with the same sensor the interpretative potential had improved by a dozen or so per cent. However, for data with a high resolution ratio, the improvement was several dozen, or even several hundred per cents, in the case of images blurred after pansharpening by the classic method (with original panchromatic image). Image segmentation showed that it is possible to recognize narrow objects that were originally blurred and difficult to identify. In addition, for panchromatic images acquired by WorldView-2, the proposed approach improved not only object detection but also the spectral quality of the fused image

    Influence of Lower Atmosphere on the Radiometric Quality of Unmanned Aerial Vehicle Imagery

    No full text
    Unmanned aerial vehicle (UAV) imagery has been widely used in remote sensing and photogrammetry for some time. Increasingly often, apart from recording images in the red-green-blue (RGB) range, multispectral images are also recorded. It is important to accurately assess the radiometric quality of UAV imagery to eliminate interference that might reduce the interpretation potential of the images and distort the results of remote sensing analyses. Such assessment should consider the influence of the atmosphere and the seasonal and weather conditions at the time of acquiring the imagery. The assessment of the radiometric quality of images acquired in different weather conditions is crucial in terms of improving the interpretation potential of the imagery and improving the accuracy of determining the indicators used in remote sensing and in environmental monitoring. Until now, the assessment of radiometric quality of UAV imagery did not consider the influence of meteorological conditions at different times of year. This paper presents an assessment of the influence of weather conditions on the quality of UAV imagery acquired in the visible range. This study presents the methodology for assessing image quality, considering the weather conditions characteristic of autumn in Central and Eastern Europe. The proposed solution facilitates the assessment of the radiometric quality of images acquired in the visible range. Using the objective indicator of quality assessment developed in this study, images were classified into appropriate categories, allowing, at a later stage, to improve the results of vegetation indices. The obtained results confirm that the proposed quality assessment methodology enables the objective assessment of the quality of imagery acquired in different meteorological conditions
    corecore