23 research outputs found

    CytoITMprobe: a network information flow plugin for Cytoscape

    Get PDF
    To provide the Cytoscape users the possibility of integrating ITM Probe into their workflows, we developed CytoITMprobe, a new Cytoscape plugin. CytoITMprobe maintains all the desirable features of ITM Probe and adds additional flexibility not achievable through its web service version. It provides access to ITM Probe either through a web server or locally. The input, consisting of a Cytoscape network, together with the desired origins and/or destinations of information and a dissipation coefficient, is specified through a query form. The results are shown as a subnetwork of significant nodes and several summary tables. Users can control the composition and appearance of the subnetwork and interchange their ITM Probe results with other software tools through tab-delimited files. The main strength of CytoITMprobe is its flexibility. It allows the user to specify as input any Cytoscape network, rather than being restricted to the pre-compiled protein-protein interaction networks available through the ITM Probe web service. Users may supply their own edge weights and directionalities. Consequently, as opposed to ITM Probe web service, CytoITMprobe can be applied to many other domains of network-based research beyond protein-networks. It also enables seamless integration of ITM Probe results with other Cytoscape plugins having complementary functionality for data analysis.Comment: 16 pages, 6 figures. Version

    Information Flow in Interaction Networks

    Full text link
    Interaction networks, consisting of agents linked by their interactions, are ubiquitous across many disciplines of modern science. Many methods of analysis of interaction networks have been proposed, mainly concentrating on node degree distribution or aiming to discover clusters of agents that are very strongly connected between themselves. These methods are principally based on graph-theory or machine learning. We present a mathematically simple formalism for modelling context-specific information propagation in interaction networks based on random walks. The context is provided by selection of sources and destinations of information and by use of potential functions that direct the flow towards the destinations. We also use the concept of dissipation to model the aging of information as it diffuses from its source. Using examples from yeast protein-protein interaction networks and some of the histone acetyltransferases involved in control of transcription, we demonstrate the utility of the concepts and the mathematical constructs introduced in this paper.Comment: 30 pages, 5 figures. This paper was published in 2007 in Journal of Computational Biology. The version posted here does not include post peer-review change

    Information flow in interaction networks II: channels, path lengths and potentials

    Full text link
    In our previous publication, a framework for information flow in interaction networks based on random walks with damping was formulated with two fundamental modes: emitting and absorbing. While many other network analysis methods based on random walks or equivalent notions have been developed before and after our earlier work, one can show that they can all be mapped to one of the two modes. In addition to these two fundamental modes, a major strength of our earlier formalism was its accommodation of context-specific directed information flow that yielded plausible and meaningful biological interpretation of protein functions and pathways. However, the directed flow from origins to destinations was induced via a potential function that was heuristic. Here, with a theoretically sound approach called the channel mode, we extend our earlier work for directed information flow. This is achieved by constructing a potential function facilitating a purely probabilistic interpretation of the channel mode. For each network node, the channel mode combines the solutions of emitting and absorbing modes in the same context, producing what we call a channel tensor. The entries of the channel tensor at each node can be interpreted as the amount of flow passing through that node from an origin to a destination. Similarly to our earlier model, the channel mode encompasses damping as a free parameter that controls the locality of information flow. Through examples involving the yeast pheromone response pathway, we illustrate the versatility and stability of our new framework.Comment: Minor changes from v3. 30 pages, 7 figures. Plain LaTeX format. This version contains some additional material compared to the journal submission: two figures, one appendix and a few paragraph
    corecore