47 research outputs found
Polarimetric imaging for the detection of synthetic models of SARS-CoV-2: A proof of concept
Objective: To conduct a proof-of-concept study of the detection of two synthetic models of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using polarimetric imaging. Approach: Two SARS-CoV-2 models were prepared as engineered lentiviruses pseudotyped with the G protein of the vesicular stomatitis virus, and with the characteristic Spike protein of SARS-CoV-2. Samples were prepared in two biofluids (saline solution and artificial saliva), in four concentrations, and deposited as 5-µL droplets on a supporting plate. The angles of maximal degree of linear polarization (DLP) of light diffusely scattered from dry residues were determined using Mueller polarimetry from87 samples at 405 nm and 514 nm. A polarimetric camera was used for imaging several samples under 380–420 nm illumination at angles similar to those of maximal DLP. Per-pixel image analysis included quantification and combination of polarization feature descriptors in 475 samples. Main results: The angles (from sample surface) of maximal DLP were 3° for 405 nm and 6° for 514 nm. Similar viral particles that differed only in the characteristic spike protein of the SARS-CoV-2, their corresponding negative controls, fluids, and the sample holder were discerned at 10-degree and 15-degree configurations. Significance: Polarimetric imaging in the visible spectrum may help improve fast, non-contact detection and identification of viral particles, and/or other microbes such as tuberculosis, in multiple dry fluid samples simultaneously, particularly when combined with other imaging modalities. Further analysis including realistic concentrations of real SARS-CoV-2 viral particles in relevant human fluids is required. Polarimetric imaging under visible light may contribute to a fast, cost-effective screening of SARS-CoV-2 and other pathogens when combined with other imaging modalities.12 página
Bridging the translational gap: what can synaptopathies tell us about autism?
Multiple molecular pathways and cellular processes have been implicated in the neurobiology of autism and other neurodevelopmental conditions. There is a current focus on synaptic gene conditions, or synaptopathies, which refer to clinical conditions associated with rare genetic variants disrupting genes involved in synaptic biology. Synaptopathies are commonly associated with autism and developmental delay and may be associated with a range of other neuropsychiatric outcomes. Altered synaptic biology is suggested by both preclinical and clinical studies in autism based on evidence of differences in early brain structural development and altered glutamatergic and GABAergic neurotransmission potentially perturbing excitatory and inhibitory balance. This review focusses on the NRXN-NLGN-SHANK pathway, which is implicated in the synaptic assembly, trans-synaptic signalling, and synaptic functioning. We provide an overview of the insights from preclinical molecular studies of the pathway. Concentrating on NRXN1 deletion and SHANK3 mutations, we discuss emerging understanding of cellular processes and electrophysiology from induced pluripotent stem cells (iPSC) models derived from individuals with synaptopathies, neuroimaging and behavioural findings in animal models of Nrxn1 and Shank3 synaptic gene conditions, and key findings regarding autism features, brain and behavioural phenotypes from human clinical studies of synaptopathies. The identification of molecular-based biomarkers from preclinical models aims to advance the development of targeted therapeutic treatments. However, it remains challenging to translate preclinical animal models and iPSC studies to interpret human brain development and autism features. We discuss the existing challenges in preclinical and clinical synaptopathy research, and potential solutions to align methodologies across preclinical and clinical research. Bridging the translational gap between preclinical and clinical studies will be necessary to understand biological mechanisms, to identify targeted therapies, and ultimately to progress towards personalised approaches for complex neurodevelopmental conditions such as autism
Hyperspectral image processing for the identification and quantification of lentiviral particles in fluid samples
Optical spectroscopic techniques have been commonly used to detect the presence of biofilm-forming pathogens (bacteria and fungi) in the agro-food industry. Recently, near-infrared (NIR) spectroscopy revealed that it is also possible to detect the presence of viruses in animal and vegetal tissues. Here we report a platform based on visible and NIR (VNIR) hyperspectral imaging for non-contact, reagent free detection and quantification of laboratory-engineered viral particles in fluid samples (liquid droplets and dry residue) using both partial least square-discriminant analysis and artificial feed-forward neural networks. The detection was successfully achieved in preparations of phosphate buffered solution and artificial saliva, with an equivalent pixel volume of 4 nL and lowest concentration of 800 TU.mu L-1. This method constitutes an innovative approach that could be potentially used at point of care for rapid mass screening of viral infectious diseases and monitoring of the SARS-CoV- 2 pandemic.This research was funded by grants number COV20-00080 and COV20-00173 of the 2020 Emergency Call for Research Projects about the SARS-CoV-2 virus and the COVID-19 disease of the Institute of Health 'Carlos III', Spanish Ministry of Science and Innovation, and by grant number EQC2019-006240-P of the 2019 Call for Acquisition of Scientific Equipment, FEDER Program, Spanish Ministry of Science and Innovation. This work has been supported by the European Commission through the JRC HUMAINT project. ABR was supported by grant number RTI2018-094465-J funded by the Spanish National Agency of Research. The authors would like to gratefully acknowledge the assistance of the members of the EOD-CBRN Group of the Spanish National Police, whose identities cannot be disclosed, and who are represented here by JMNG. Authors thank continuous support from their institutions
Maternal dietary patterns and acute leukemia in infants: results from a case control study in Mexico
BackgroundChildhood cancer is the leading cause of disease-related mortality among children aged 5–14 years in Mexico, with acute leukemia being the most common cancer among infants. Examining the overall dietary patterns allows for a comprehensive assessment of food and nutrient consumption, providing a more predictive measure of disease risk than individual foods or nutrients. This study aims to evaluate the association between maternal dietary patterns during pregnancy and the risk of acute leukemia in Mexican infants.MethodsA hospital-based case–control study was conducted, comparing 109 confirmed acute leukemia cases with 152 age-matched controls. All participants (≤24 months) were identified at hospitals in Mexico City between 2010 and 2019. Data on a posteriori dietary patterns and other relevant variables were collected through structured interviews and dietary questionnaires. Multivariate logistic regression was employed to estimate the association between maternal dietary patterns during pregnancy and the risk of acute leukemia in infants.ResultsThe “Balanced & Vegetable-Rich” pattern, characterized by a balanced consumption of various food groups and higher vegetable intake, exhibited a negative association with acute leukemia when compared to the “High Dairy & Cereals” Pattern (adjusted odds ratio [OR] = 0.51; 95% confidence interval [CI]: 0.29, 0.90). We observed that mothers who gave birth to girls and adhered to a healthy dietary pattern during pregnancy exhibited significantly lower odds of their children developing AL compared to those who gave birth to boys [OR = 0.32 (95% CI 0.11, 0.97)]. Our results underscore the significance of maternal nutrition as a modifiable factor in disease prevention and the importance of prenatal health education
Evidence of spatial clustering of childhood acute lymphoblastic leukemia cases in Greater Mexico City: report from the Mexican Inter-Institutional Group for the identification of the causes of childhood leukemia
BackgroundA heterogeneous geographic distribution of childhood acute lymphoblastic leukemia (ALL) cases has been described, possibly, related to the presence of different environmental factors. The aim of the present study was to explore the geographical distribution of childhood ALL cases in Greater Mexico City (GMC).MethodsA population-based case-control study was conducted. Children <18 years old, newly diagnosed with ALL and residents of GMC were included. Controls were patients without leukemia recruited from second-level public hospitals, frequency-matched by sex, age, and health institution with the cases. The residence address where the patients lived during the last year before diagnosis (cases) or the interview (controls) was used for geolocation. Kulldorff’s spatial scan statistic was used to detect spatial clusters (SCs). Relative risks (RR), associated p-value and number of cases included for each cluster were obtained.ResultsA total of 1054 cases with ALL were analyzed. Of these, 408 (38.7%) were distributed across eight SCs detected. A relative risk of 1.61 (p<0.0001) was observed for the main cluster. Similar results were noted for the remaining seven ones. Additionally, a proximity between SCs, electrical installations and petrochemical facilities was observed.ConclusionsThe identification of SCs in certain regions of GMC suggest the possible role of environmental factors in the etiology of childhood ALL
Plant diversity patterns in neotropical dry forests and their conservation implications
This is the author accepted manuscript. The final version is available from American Association for the Advancement of Science via the DOI in this record.Seasonally dry tropical forests are distributed across Latin America and the Caribbean and are highly threatened, with less than 10% of their original extent remaining in many countries. Using 835 inventories covering 4660 species of woody plants, we show marked floristic turnover among inventories and regions, which may be higher than in other neotropical biomes, such as savanna. Such high floristic turnover indicates that numerous conservation areas across many countries will be needed to protect the full diversity of tropical dry forests. Our results provide a scientific framework within which national decision-makers can contextualize the floristic significance of their dry forest at a regional and continental scale.This paper is the result of the Latin American and Caribbean Seasonally Dry Tropical Forest Floristic Network (DRYFLOR), which has been supported at the Royal Botanic Garden Edinburgh by a Leverhulme Trust International Network Grant (IN-074). This work was also supported by the U.K. Natural Environment Research Council grant NE/I028122/1; Colciencias Ph.D. scholarship 529; Synthesys Programme GBTAF-2824; the NSF (NSF 1118340 and 1118369); the Instituto Humboldt (IAvH)–Red colombiana de investigación y monitoreo en bosque seco; the Inter-American Institute for Global Change Research (IAI; Tropi-Dry, CRN2-021, funded by NSF GEO 0452325); Universidad Nacional de Rosario (UNR); and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). The data reported in this paper are available at www.dryflor.info. R.T.P. conceived the study. M.P., A.O.-F., K.B.-R., R.T.P., and J.W. designed the DRYFLOR database system. K.B.-R. and K.G.D. carried out most analyses. K.B.-R. R.T.P., and K.G.D. wrote the manuscript with substantial input from A.D.-S., R.L.-P., A.O.-F., D.P., C.Q., and R.R. All the authors contributed data, discussed further analyses, and commented on various versions of the manuscript. K.B.-R. thanks G. Galeano who introduced her to dry forest research. We thank J. L. Marcelo, I. Huamantupa, C. Reynel, S. Palacios, and A. Daza for help with fieldwork and data entry in Peru
EDUCACIÓN AMBIENTAL Y SOCIEDAD. SABERES LOCALES PARA EL DESARROLLO Y LA SUSTENTABILIDAD
Este texto contribuye al análisis científico de varias áreas del conocimiento como la filosofía social, la patología, la educación para el cuidado del medio ambiente y la sustentabilidad que inciden en diversas unidades de aprendizaje de la Licenciatura en Educación para la Salud y de la Maestría en Sociología de la SaludLas comunidades indígenas de la sierra norte de Oaxaca México, habitan un territorio extenso de biodiversidad. Sin que sea una área protegida y sustentable, la propia naturaleza de la región ofrece a sus visitantes la riqueza de la vegetación caracterizada por sus especies endémicas que componen un paisaje de suma belleza
A consensus protocol for functional connectivity analysis in the rat brain
Task-free functional connectivity in animal models provides an experimental framework to examine connectivity phenomena under controlled conditions and allows for comparisons with data modalities collected under invasive or terminal procedures. Currently, animal acquisitions are performed with varying protocols and analyses that hamper result comparison and integration. Here we introduce StandardRat, a consensus rat functional magnetic resonance imaging acquisition protocol tested across 20 centers. To develop this protocol with optimized acquisition and processing parameters, we initially aggregated 65 functional imaging datasets acquired from rats across 46 centers. We developed a reproducible pipeline for analyzing rat data acquired with diverse protocols and determined experimental and processing parameters associated with the robust detection of functional connectivity across centers. We show that the standardized protocol enhances biologically plausible functional connectivity patterns relative to previous acquisitions. The protocol and processing pipeline described here is openly shared with the neuroimaging community to promote interoperability and cooperation toward tackling the most important challenges in neuroscience
Lead Recovery from a Lead Concentrate throughout Direct Smelting Reduction Process with Mixtures of Na<sub>2</sub>CO<sub>3</sub> and SiC to 1000 °C
Lead was recovered through a direct smelting reduction route from a lead concentrate by using mixtures of Na2CO3 and SiC to 1000 °C. The lead concentrate was obtained from the mining State of Zacatecas, México by traditional mineral processing and froth flotation. The experimental trials showed that 86 wt.% of lead with a purity up to 97% can be recovered from the lead concentrate by a single step reduction process when 40 wt.% Na2CO3 and 0.4 g SiC were used in the initial charge. The process was modeled in the thermodynamic software FactSage 7.3 to evaluate the effect of adding different amounts of Na2CO3 on the lead recovery rates while holding constant the SiC amount and temperature. The stability phase diagram obtained showed that an addition of 34 wt.% Na2CO3 was enough to reach the highest lead recovery. It was observed that the interaction of Na2CO3 and SiC at a high temperature promotes the formation of C and Na2O, and SiO2, respectively, where the Na2O partially bonds with silica and sulfur forming Na2S and sodium silicates which may decrease the SO2 emissions and increase the weather degradation of the slag. The PbS was mainly reduced by the produced C and CO formed by the interaction between Na2CO3 and SiC at 1000 °C. The predicted results reasonably match with those obtained experimentally in the lead recovery rates and compounds formation